首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   6篇
化学工业   5篇
金属工艺   1篇
机械仪表   2篇
能源动力   14篇
石油天然气   2篇
  2021年   3篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   4篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2005年   1篇
  2004年   1篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
21.
Progress in the production and application of n-butanol as a biofuel   总被引:1,自引:0,他引:1  
Butanol is a very competitive renewable biofuel for use in internal combustion engines given its many advantages. In this review, the properties of butanol are compared with the conventional gasoline, diesel fuel, and some widely used biofuels, i.e. methanol, ethanol, biodiesel. The comparison of fuel properties indicates that n-butanol has the potential to overcome the drawbacks brought by low-carbon alcohols or biodiesel. Then, the development of butanol production is reviewed and various methods for increasing fermentative butanol production are introduced in detailed, i.e. metabolic engineering of the Clostridia, advanced fermentation technique. The most costive part of the fermentation is the substrate, so methods involved in renewed substrates are also mentioned. Next, the applications of butanol as a biofuel are summarized from three aspects: (1) fundamental combustion experiments in some well-defined burning reactors; (2) a substitute for gasoline in spark ignition engine; (3) a substitute for diesel fuel in compression ignition engine. These studies demonstrate that butanol, as a potential second generation biofuel, is a better alternative for the gasoline or diesel fuel, from the viewpoints of combustion characteristics, engine performance, and exhaust emissions. However, butanol has not been intensively studied when compared to ethanol or biodiesel, for which considerable numbers of reports are available. Finally, some challenges and future research directions are outlined in the last section of this review.  相似文献   
22.
基于光学定容燃烧弹试验平台,通过高速纹影摄像系统在相同甲烷燃料初始温度、压力及混合气浓度下,定量分析了不同结构预燃室湍流射流点火(turbulent jet ignition, TJI)的燃烧特性,包括火焰传播速度、火焰面积、火焰形态及燃烧压力等参数。研究结果表明,预燃室孔径越小,相同时间内火焰传播得越远,火焰传播速度和火焰面积增长速度越快,燃烧压力峰值越高。随着预燃室孔径减小,着火机理会由射流中带有火焰的火焰点火转变为火焰过孔时熄灭的喷射点火。喷射点火着火时刻延迟,初始火焰速度减慢,但燃烧压力峰值受影响不大。多级加速预燃室压力升高率与压力峰值与单孔预燃室相比变化不大。虽然火焰出口时速度较慢,但是火焰出口时刻提前且速度衰减较弱,因此多级加速预燃室火焰速度在短时间内超过单孔预燃室,并且压力和火焰面积也更早达到最大值。  相似文献   
23.
This paper reviews the properties and application of di-methyl ether (DME) as a candidate fuel for compression-ignition engines. DME is produced by the conversion of various feedstock such as natural gas, coal, oil residues and bio-mass. To determine the technical feasibility of DME, the review compares its key properties with those of diesel fuel that are relevant to this application. DME’s diesel engine-compatible properties are its high cetane number and low auto-ignition temperature. In addition, its simple chemical structure and high oxygen content result in soot-free combustion in engines. Fuel injection of DME can be achieved through both conventional mechanical and current common-rail systems but requires slight modification of the standard system to prevent corrosion and overcome low lubricity. The spray characteristics of DME enable its application to compression-ignition engines despite some differences in its properties such as easier evaporation and lower density. Overall, the low particulate matter production of DME provides adequate justification for its consideration as a candidate fuel in compression-ignition engines. Recent research and development shows comparable output performance to a diesel fuel led engine but with lower particulate emissions. NOx emissions from DME-fuelled engines can meet future regulations with high exhaust gas recirculation in combination with a lean NOx trap. Although more development work has focused on medium or heavy-duty engines, this paper provides a comprehensive review of the technical feasibility of DME as a candidate fuel for environmentally-friendly compression-ignition engines independent of size or application.  相似文献   
24.
The combustion process in the Premixed Charge Compression Ignition (PCCI) engine is basically restricted by the in cylinder charged mixture components. Also, the homogeneity of the charged mixture is determining the quality and process of the chemical reaction during the first stage of combustion which establish the auto-ignition process. In the present work, the engine experimental setup is equipped with a new suggested modification on the original fuel system device in order to produce a perfect commixture of diesel/ethanol at different blends ratio with the charged air. The obtained laboratory results are used to validate the simulation's data of the PCCI engine ignition. The prediction is performed using a detailed kinetic reaction mechanism. The simulation study has been achieved to predict the auto-ignition timing and the combustion characteristics of the PCCI engine fueled with different blends of ethanol and diesel at different volume percentage. The obtained results show that the premixed ratio of the ethanol in the ethanol/diesel fuel blends can be used to control the auto-ignition timing and the combustion characteristics at different engine air/fuel ratios. Also, the main pathway of this work is to establish the influence of the engine operating parameters which including the premixed ratio, fuel–air equivalence ratio on the engine performance, combustion and emission characteristics of the PCCI engine. These effects are studied and traced through the simulation result data of the in-cylinder pressure, temperature, and gas phase heat release at different a premixed ratio of ethanol-diesel fuels blends of 0, 10, 20, 30,40 and 50% (by volume).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号