首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   234篇
  免费   1篇
化学工业   63篇
建筑科学   1篇
能源动力   142篇
轻工业   26篇
石油天然气   2篇
自动化技术   1篇
  2023年   1篇
  2022年   3篇
  2021年   4篇
  2020年   7篇
  2019年   6篇
  2018年   6篇
  2017年   5篇
  2016年   23篇
  2015年   3篇
  2014年   19篇
  2013年   19篇
  2012年   18篇
  2011年   43篇
  2010年   26篇
  2009年   21篇
  2008年   15篇
  2007年   10篇
  2006年   2篇
  2005年   1篇
  2003年   1篇
  1996年   1篇
  1994年   1篇
排序方式: 共有235条查询结果,搜索用时 15 毫秒
41.
新一代的生物燃料——丁醇的开发动向   总被引:1,自引:0,他引:1  
宋锦玉 《当代化工》2011,40(6):631-632,652
作为新一代的生物燃料,生物丁醇因其物理性能、燃烧性能优于生物乙醇,越来越受到人们的关注。生物丁醇的开发,对缓解能源危机,保护环境具有重要的意义。对生物丁醇与生物乙醇的性能进行了比较,介绍了生物丁醇的开发动向。  相似文献   
42.
In recent years the focus on sustainable biofuel production from agricultural residues has increased considerably. However, the scientific work within this field has predominantly been concentrated upon bioresources from industrialised and newly industrialised countries, while analyses of the residues from most developing countries remain sparse. In this study the theoretical bioenergy potentials (bioethanol and biogas) of a spectrum of West African agricultural residues were estimated based on their compositions. We analysed 13 of the most common residues: yam peelings, cassava peelings, cassava stalks, plantain peelings, plantain trunks, plantain leaves, cocoa husks, cocoa pods, maize cobs, maize stalks, rice straw, groundnut straw and oil palm empty fruit bunches. The yam peelings showed the highest methane and bioethanol potentials, with 439 L methane (kg Total Solids)−1 and 0.61 L bioethanol (kg TS)−1 based on starch and cellulose alone due to their high starch content and low content of un-biodegradable lignin and ash. A complete biomass balance was done for each of the 13 residues, providing a basis for further research into the production of biofuels or biorefining from West African agricultural residues.  相似文献   
43.
44.
The relationship between total soluble sugar content and Brix in stalk juice of sweet sorghum was determined through one-dimensional linear regression. Meanwhile, bioethanol fermentation experiments were conducted in shaking flasks and 10 l fluidized bed bioreactor with stalk juice of Yuantian No. 1 sweet sorghum cultivar when immobilized yeast was applied. The experimental results in the shaking flasks showed that the order of influence on improving ethanol yield was (NH4)2SO4>MgSO4>K2HPO4, and the optimum inorganic salts supplement dose was determined as follows: K2HPO4 0%, (NH4)2SO4 0.2%, MgSO4 0.05%. When the optimum inorganic salts supplement dose was used in fermentation in 10 l fluidized bed reactor, the fermentation time and ethanol content were 5 h and 6.2% (v/v), respectively, and ethanol yield was 91.61%, which was increased by 9.73% than blank. In addition, the results showed that the fermentation time was about 6–8 times shorter in fluidized bed bioreactor with immobilized yeast than that of conventional fermentation technology. As a result, it can be concluded that the determined optimum inorganic salts supplement dose could be used as a guide for commercial ethanol production. The fluidized bed bioreactor with immobilized yeast technology has a great potential for ethanol fermentation of stalk juice of sweet sorghum.  相似文献   
45.
Homogeneous charge compression ignition (HCCI) engines are amenable to a large variety of fuels as long as the fuel can be fully vaporized, mixed with air, and receive sufficient heat during the compression stroke to reach the autoignition conditions. This study investigates an HCCI engine fueled with ethanol-in-water mixtures, or “wet ethanol”. The motivation for using wet ethanol fuel is that significant energy is required for distillation and dehydration of fermented ethanol (from biosources, not from petroleum), thus direct use of wet ethanol could improve the associated energy balance. Recent modeling studies have predicted that an HCCI engine can operate using fuel containing as little as 35% ethanol-in-water with surprisingly good performance and emissions. With the previous modeling study suggesting feasibility of wet ethanol use in HCCI engines, this paper focuses on experimental operation of a 4-cylinder 1.9-L engine running in HCCI mode fueled with wet ethanol. This paper investigates the effect of the ethanol-water fraction on the engine's operating limits, intake temperatures, heat release rates, and exhaust emissions for the engine operating with 100%, 90%, 80%, 60%, and 40% ethanol-in-water mixtures.  相似文献   
46.
A suitable alternative to replace fossil fuels is the production of bioethanol from agroindustrial waste. Grape pomace is the most abundant residue in San Juan and sugar beet pomace could be important in the region. Solid-State Fermentation (SSF) is a technology that allows transforming agroindustrial waste into many valuable bioproducts, like ethanol. This work reports a laboratory scale SSF to obtain alcohol from grape and sugar beet pomace by means of Saccharomyces cerevisiae yeasts. The initial conditions of the culture medium were: sugars 16.5% (p/p); pH 4.5; humidity 68% (p/p). Cultures were inoculated with 108 cells/g of pomace, and incubated in anaerobic environment, at 28 °C, during 96 h. SSF showed ethanol maximum concentrations at 48 h and ethanol yield on sugars consumed was more than 82%. Yield attained creates expectation about the use of SSF to obtain fuel alcohol.  相似文献   
47.
48.
A bioethanol reforming system, capable of converting a diluted water-ethanol mixture into hydrogen, is sized and set up to produce 5 kW of electric power via a polymer electrolyte membrane fuel cells (PEMFC). A part of the produced hydrogen supplies heat for the reforming reaction without impairing the power generation, then no additional fuel is required. According to the different configurations of the control variables, the heat released from the system is distributed between two different temperature ranges and coupled to a standard house-scale combined heat and power (CHP) cogeneration apparatus. Hot water can be produced continuously at a high enough temperature to cover the need of a F-class home in the moderately cold Northern Italy winter climate. With a micro-accumulation solution and a careful choice of the set-points, also the sanitary hot water demand (DHW) of a 4-members family might be fulfilled with 2–3 daily cycles of the same system.  相似文献   
49.
Waste cooking oils (WCO) can be used as feedstock for biodiesel (fatty acid ethyl or methyl esters—FAEE or FAME) production. Their usual high acidity, high moisture, and low stability can impair the reaction yield and generate a low-quality biodiesel. Here, we performed liquid–liquid washings using WCO and ethanol-based solvents with the goal of generating oil-rich miscella as FAEE feedstocks with a higher quality than WCO. Three different solvents were evaluated: 99% ethanol, 95% ethanol, and the soybean oil extraction ethanolic phase (SEP), a by-product with immense unexplored antioxidant potential obtained by extracting soybean oil using ethanol. Washings were performed in a 1000 mL flat-bottom flask at 78.1 °C, using a 1:2 (w/v) oil/solvent ratio, under magnetic stirring (1200 rpm) for 10 min. Ethyl esters were prepared via homogeneous alkali transesterification using WCO and oil-rich miscella as feedstocks. Treatments reduced the acid value by 40–61% and the peroxide value by 15–50%. Improvements in feedstock quality generated 24–54% higher biodiesel yields. The oil-rich phase produced with SEP was 15% more resistant to oxidation than WCO. This was attributed to the transference of isoflavones from the SEP. However, biodiesel from treated samples presented equal or lower oxidative stability than FAEE from WCO. High-performance liquid chromatography (HPLC) analysis showed that no isoflavones remained in biodiesel after purification. Pretreatment of WCO with ethanol-based extracts such as the SEP has great potential to improve WCO quality for biodiesel production as it can be a source of plant-based antioxidants.  相似文献   
50.
Faced with the energy crisis and environmental degradation, due to the massive use of fossil energy sources, biodiesel is an attractive alternative to diesel fuel. With a view to developing local biodiesel production, using bioethanol as a sustainable reactant for biodiesel production, rather than methanol, is leading to increasing interest, notably in emerging countries. Indeed, bioethanol, which is less toxic than methanol, is produced from local and renewable agricultural resources, being more sustainable and providing access to greater energy independence. However, some issues are limiting the process like purification problems, or the presence of water in bioethanol leading to a drop in yield. Although several studies have already been published on ethyl ester production, most of them primarily focus on homogeneous alkaline catalysis, and report various data. Therefore, this paper aims at presenting a review of previous studies on the subject.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号