首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   403篇
  免费   2篇
  国内免费   6篇
电工技术   1篇
综合类   2篇
化学工业   163篇
金属工艺   10篇
机械仪表   3篇
建筑科学   1篇
能源动力   169篇
无线电   9篇
一般工业技术   38篇
冶金工业   12篇
原子能技术   1篇
自动化技术   2篇
  2023年   7篇
  2022年   14篇
  2021年   14篇
  2020年   25篇
  2019年   22篇
  2018年   13篇
  2017年   13篇
  2016年   2篇
  2015年   8篇
  2014年   18篇
  2013年   15篇
  2012年   15篇
  2011年   45篇
  2010年   25篇
  2009年   33篇
  2008年   42篇
  2007年   37篇
  2006年   16篇
  2005年   8篇
  2004年   2篇
  2003年   3篇
  2002年   8篇
  2001年   5篇
  2000年   7篇
  1999年   5篇
  1998年   4篇
  1997年   3篇
  1995年   1篇
  1993年   1篇
排序方式: 共有411条查询结果,搜索用时 15 毫秒
151.
Ceria co-doped with Sm3+ and Nd3+ powders are successfully synthesized by citric acid–nitrate low-temperature combustion process. In order to optimize the electrical properties of the series of ceria co-doped with Sm3+ and Nd3+, the effects of co-doping, doping content and sintering conditions on grain and grain boundary conductivity are investigated in detail. For the series of Ce0.9(SmxNd1−x)0.1O1.95 (x = 0, 0.5, 1) and Ce1−x(Sm0.5Nd0.5)xOδ (x = 0.05, 0.10, 0.15, 0.20) sintered under the same condition, Ce0.9(Sm0.5Nd0.5)0.1O1.95 exhibits both higher grain and grain boundary conductivity. Compared with Ce0.9Gd0.1O1.95 and Ce0.8Sm0.2O1.9, Ce0.9(Sm0.5Nd0.5)0.1O1.95 sintered at 1350–1400 °C shows higher total conductivity with the value of 1.0 × 10−2 S cm−1 at 550 °C. In addition, it can be found the trends of grain and grain boundary activation energies of Ce1−x(Sm0.5Nd0.5)xOδ are both consistent with those of Ce1−xNdxOδ, but different from those of Ce1−xSmxOδ, which can be explained as: the local ordering of oxygen vacancies maybe occurs more easily in Nd-doped ceria than in Sm-doped ceria; the segregation amount of Sm3+ is more than that of Nd3+ to the grain boundaries in ceria co-doped with Sm3+ and Nd3+, which is confirmed by X-ray photoelectron spectroscopy (XPS).  相似文献   
152.
The preferential oxidation of CO in H2-rich gas was studied over gold catalysts supported on ceria modified by rare earths (RE = La, Sm, Gd and Y). The ceria supports were prepared by mechanochemical activation or co-precipitation. The amount of RE2O3 was 10 wt%. Gold (2 wt%) was added by the deposition-precipitation method. The samples were characterized using XRD, HRTEM, HAADF, TPR, and Raman spectroscopy. It was established that catalysts prepared by co-precipitation were more active than samples made by mechanochemical activation. A gold catalyst on yttrium-modified ceria, prepared by co-precipitation, exhibited the highest catalytic activity and selectivity, and high stability. No substantial differences in the size distribution and average size of the nanogold particles in the studied catalysts were observed. The main reason for the differences in PROX activity of these gold catalysts was searched into the role of the ceria supports, depending on the preparation method, and the nature of the modifier.  相似文献   
153.
Single-chamber fuel cells with electrodes supported on an electrolyte of gadolinium doped ceria Ce1−xGdxO2−y with x = 0.2 (CGO) 200 μm thickness has been successfully prepared and characterized. The cells were fed directly with a mixture of methane and air. Doped ceria electrolyte supports were prepared from powders obtained by the acetyl-acetonate sol–gel related method. Inks prepared from mixtures of precursor powders of NiO and CGO with different particle sizes and compositions were prepared, analysed and used to obtain optimal porous anodes thick films. Cathodes based on La0.5Sr0.5CoO3 perovskites (LSCO) were also prepared and deposited on the other side of the electrolyte by inks prepared with a mixture of powders of LSCO, CGO and AgO obtained also by sol–gel related techniques. Both electrodes were deposited by dip coating at different thicknesses (20–30 μm) using a commercial resin where the electrode powders were dispersed. Finally, electrical properties were determined in a single-chamber reactor where methane, as fuel, was mixed with synthetic air below the direct combustion limit. Stable density currents were obtained in these experimental conditions. Temperature, composition and flux rate values of the carrier gas were determinants for the optimization of the electrical properties of the fuel cells.  相似文献   
154.
Ceria nanoparticles are used for fuel cell, metal polishing and automobile exhaust catalyst; however, little is known about the impact of their release to the environment. The stability, transport and deposition of engineered CeO2 nanoparticles through water-saturated column packed with sand were studied by monitoring effluent CeO2 concentration. The influence of solution chemistry such as ionic strength (1-10 mM) and pH (3-9) on the mobility and deposition of CeO2 nanoparticles was investigated by using a three-phase (deposition-rinse-reentrainment) procedure in packed bed columns. The results show that water chemistry governs the transport and deposition of CeO2 nanoparticles. Transport is significantly hindered at acidic conditions (pH 3) and high ionic strengths (10 mM and above), and the deposited CeO2 particles may not be re-entrained by increasing the pH or lowering the ionic strength of water. At neutral and alkaline conditions (pH6 and 9), and lower ionic strengths (below 10 mM), partial breakthrough of CeO2 nanoparticles was observed and particles can be partially detached and re-entrained from porous media by changing the solution chemistry. A mathematical model was developed based on advection-dispersion-adsorption equations and it successfully predicts the transport, deposition and re-entrainment of CeO2 nanoparticles through a packed bed. There is strong agreement between the deposition rate coefficients calculated from experimental data and predicted by the model. The successful prediction for attachment and detachment of nanoparticles during the deposition and re-entrainment phases is unique addition in this study. This work can be applied to access the risk of CeO2 nanoparticles transport in contaminated ground water.  相似文献   
155.
《工程(英文)》2017,3(3):393-401
Solar-powered carbon dioxide (CO2)-to-fuel conversion presents itself as an ideal solution for both CO2 mitigation and the rapidly growing world energy demand. In this work, the heating effect of light irradiation onto a bed of supported nickel (Ni) catalyst was utilized to facilitate CO2 conversion. Ceria (CeO2)-titania (TiO2) oxide supports of different compositions were employed and their effects on photothermal CO2 conversion examined. Two factors are shown to be crucial for instigating photothermal CO2 methanation activity: ① Fine nickel deposits are required for both higher active catalyst area and greater light absorption capacity for the initial heating of the catalyst bed; and ② the presence of defect sites on the support are necessary to promote adsorption of CO2 for its subsequent activation. Titania inclusion within the support plays a crucial role in maintaining the oxygen vacancy defect sites on the (titanium-doped) cerium oxide. The combination of elevated light absorption and stabilized reduced states for CO2 adsorption subsequently invokes effective photothermal CO2 methanation when the ceria and titania are blended in the ideal ratio(s).  相似文献   
156.
《Advanced Powder Technology》2020,31(7):2880-2889
Ceria (CeO2) synthesized by cerium nitrate hexahydrate in alkaline solution under hydrothermal treatment produces a fiber structure that allows high O-P bond cleavage activity. Brunauer–Emmett–Teller (BET) analysis revealed that fiber-morphological CeO2 with high surface area (73.9 m2/g) and pore volume (0.42 cm3/g) showed better hydrolytic activity than nanopolyhedral and cubic morphologies. The CeO2 fiber displayed hydrolytic activity in a tris(hydroxymethyl)aminomethane (Tris) buffer; however, no reaction occurred in a phosphate buffer. From analysis by based on scanning transmission electron microscopy (STEM) and energy-dispersive X-ray spectroscopy (EDX), the phosphate group in the buffer was seen to be immediately adsorbed on the surface of CeO2 particles; therefore, the CeO2 catalysts could not attack the phosphoric esters as a substrate. In addition, the CeO2 fiber showed hydrolytic activity for deoxyribonucleic acid (DNA). Moreover, enzymes loaded on the CeO2 fiber particles retained activity levels equivalent to free-solution enzymes. It is thought that the findings of the present study regarding the properties of CeO2 fiber will have a significant impact in the fields of not only antibacterial and antimicrobial reagents, but also biosensors and biocatalysts.  相似文献   
157.
A novel lamellar feather-like CeO2 structure has been fabricated by using a triblock copolymer as the structure-directing agent. This material was characterized in detail by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and BET surface area measurements. Compared with conventional spherical shaped ceria prepared by ammonia gelation, the ceria feathers have superior ability to support nanosized platinum particles due to their special structure. The “skeletons” of ceria feathers can serve as an ideal host matrix to anchor the platinum particles. Furthermore, the inter-crossing pattern of the “skeletons” also acts as a partition to separate platinum particles, allowing the Pt nanoparticles (average diameter ∼6 nm) to be highly dispersed in the structure. The Pt/feather-like CeO2 catalyst exhibits high activity in the water gas shift reaction.   相似文献   
158.
The characters of transient heat transfer and solar absorption are analyzed based on the multiscale CeO2 reduction to predict the H2 production, and the results show that the heat absorption of CeO2 is affected by the diameter and the value of concentration ratio. The proportion of energy absorbed by CeO2 increases from 0.55% to 42.73% as the diameter of CeO2 increases from 0.1 to 100 μm. However, the time required for 0.1 and 100 μm CeO2 to reach 1775 K is 0.07 and 0.83 s, respectively. The peak of the solar-to-fuel energy conversion efficiency (ηsolar-fuel) for 1 μm CeO2 is 16.43%, which is the maximum for all selected diameters. After the analysis of the radiation intensity of blackbody and the absorptance of 1 μm CeO2 as a function of wavelength, we find that comparing with no cutoff wavelength coating, the peak of ηsolar-fuel increases from 16.43% to 18.91% as the cutoff wavelength is 600 nm. To reach the same temperature of 1773 K, it takes 0.15 and 0.05 s as C is 50 and 200, and ηsolar-fuel is improved from 14.43% to 17.93%.  相似文献   
159.
Carbon dioxide methanation is an interesting way to reduce greenhouse effect gases emission and, simultaneously, provide a renewable energy source of methane. Ceria and 15 at.% Zr-doped ceria supported nickel catalysts were characterized by means of various techniques (BET, XRD, Raman, H2-TPR, CO2-TPD, O2-TPO, OSC and H2-chemisorption) and evaluated in carbon dioxide methanation. Zr incorporation into catalyst formulation reduced catalyst's basicity but favored its reducibility, nickel availability and oxygen storage capacity. These characteristics gave rise to an improved catalytic performance both in terms of activity and stability: temperature required to achieve 50% conversion was reduced in 20 °C and low temperature (250 °C) stability was improved in around 8%. Initial rates approach was employed to determine reaction rates and apparent activation energies for CO2 methanation, which resulted in 113 and 121 kJ mol−1for Ni/CeO2 and Ni/Ce0.85Zr0.15O2, respectively.  相似文献   
160.
Thermochemical cycles received renewed interest as CO2 and H2O energy-upgrading processes using solar energy as source. The two-step cycles, based on self-reduction in a solar reactor at high temperature (above 1300–1400 °C) and re-oxidation by CO2 and/or H2O flow, are the most interesting due to their simplicity and high theoretical solar-to-fuel efficiency. In the two-step cycle, ceria has been recognized as the benchmark material but it suffers from high reduction temperature, low re-oxidation kinetics as well as low stability, thus hindering practical application. In this work, the redox properties of two Ce0.75Zr0.25O2 materials prepared by hydrothermal synthesis were compared with those of a co-precipitated sample with the same nominal composition used as reference. Samples were characterized by X-Ray Diffraction (XRD), N2 physisorption, Scanning Elecron Microscopy (SEM), X-Ray Photoelectron Spectroscopy (XPS), and Electron Paramagnetic Resonance (EPR); their self-reducibility and CO2 splitting activity were tested in a Thermogravimetric (TG) balance, while H2O splitting properties were studied in an ad-hoc fixed bed reactor on H2 pre-reduced samples. Characterization results and activity tests agreed that the Ce3+ fraction both on the surface and in the bulk of ceria-zirconia can be increased by hydrothermal synthesis, thus providing improved redox properties and higher splitting activity with respect to the co-precipitated sample. So, hydrothermal synthesis, providing a controlled nucleation and growth of crystallites, appears as a promising route for the preparation of ceria-based materials with tuned oxygen vacancies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号