首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   0篇
  国内免费   2篇
化学工业   4篇
金属工艺   11篇
机械仪表   2篇
能源动力   6篇
无线电   4篇
一般工业技术   22篇
  2023年   1篇
  2020年   2篇
  2019年   4篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2012年   3篇
  2011年   8篇
  2010年   3篇
  2009年   8篇
  2008年   5篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
排序方式: 共有49条查询结果,搜索用时 15 毫秒
21.
C.C. Tseng  W. Wu  C.L. Chang 《Thin solid films》2008,516(16):5424-5429
TaN-Ag nanocomposite thin films with Ag nano-particles dispersed in TaN matrix and surface were prepared by reactive co-sputtering of Ta and Ag in the plasma of N2 and Ar. After deposition, the films were annealed using RTA (Rapid Thermal Annealing) at 350 °C for 2, 4, 8 min respectively to induce the nucleation and growth of Ag particles. C-AFM (Conductive-atomic Force Microscopy) and SSPM (Surface Scanning Potential Microscopy) were applied to characterize the emergence of Ag nano-particles on the surface of TaN-Ag thin films in this study. It is seen that Ag nano-particles may emerge in the matrix and on the surface of TaN and, possibly, grow. The results are compared with that obtained by FE-SEM (field-emission scanning electron microscopy). After comparison, C-AFM and SSPM are seen to be useful in characterizing the emergence and distribution of Ag particles. The results also show that the films' hardness and Young's modulus values would increase or decrease with the increase of annealing time, depending on Ag content and annealing time. This behavior is similar to that of TaN-Cu nanocomposite film. In addition, the increase of wear resistance of these coatings is proved.  相似文献   
22.
As-doped ZnO films were prepared by co-sputtering ZnO and Zn3As2 targets on glass substrates at various temperatures from 250 to 500 °C. The effects of substrate temperature on structural, electrical and optical properties of the films were investigated. The films grown at temperatures from 250 to 400 °C were c-axis oriented and those deposited above 400 °C exhibited poor crystallinity. Hall measurement showed that p-type ZnO:As films were prepared at different temperatures. With increasing the substrate temperature from 250 to 500 °C, the optical band gap (Eg) first decreased, and then increased. The Eg changes upon the substrate temperature were due to the effect of substrate temperature on the crystallinity of ZnO films.  相似文献   
23.
采用射频磁控共溅射法在硅衬底上沉积Cu/SiO2复合薄膜,然后在NH3保护下高温退火,再于空气中自然冷却氧化,形成XuO结构,对其微观结构进行分析.随着退火温度的升高,CuO由单斜晶相逐渐转变为立方晶相,CuO薄膜结晶质量提高.样品于900℃和1100℃退火后,形成有序散落的微米级颗粒,前者由粒状团簇组成,颗粒表面比较粗糙,后者由片融状小颗粒融合而成,颗粒表面比较光滑.  相似文献   
24.
Deposition of amorphous carbon-silver composites   总被引:1,自引:0,他引:1  
Composites of amorphous carbon films and silver were deposited by co-sputtering, where the target (10 cm diameter) was of pure graphite with small inclusion of pure silver (less than 1 cm2). The films were deposited under different powers, from 40 to 250 W, and different target-substrate distances. The substrate was earthed and rotated in order to obtain a uniform distribution of the silver content. The addition of the Ag piece into the target increased the deposition rate of the carbon films, which could be related to the higher sputter yield of the silver, but there seems to be also a contribution from a larger emission of secondary electrons from the Ag that enhances the plasma and therefore the sputtering process becomes more efficient.Scanning electron micrographs acquired using backscattered electrons showed that the silver was segregated from the carbon matrix, forming nanoparticles or larger clusters as the power was increased. The X-ray diffraction pattern showed that the silver was crystalline and the carbon matrix remained amorphous, although for certain conditions a peak attributed to fullerene-like structures was obtained. Finally, we used Raman spectroscopy to understand the bonding characteristics of the carbon-silver composites, finding that there are variations in the D/G ratio, which can be correlated to the observed structure and X-ray diffraction results.  相似文献   
25.
Amorphous oxygenated iron boron nitride (a-FeBN:O) thin films were prepared by reactive radio-frequency (RF) sputtering, from hexagonal boron nitride chips placed on iron target, under a total pressure of a gas mixture of argon and oxygen maintained at 1 Pa. The films were deposited onto silicon and glass substrates, at room temperature. The power of the generator RF was varied from 150 to 350 W. The chemical and structural analyses were investigated using X-ray photoelectron spectroscopy (XPS), energy dispersive of X-ray and X-ray reflectometry (XRR). The optical properties of the films were obtained from the optical transmittance and reflectance measurements in the ultraviolet-visible-near infrared wavelengths range. XPS reveals the presence of boron, nitrogen, iron and oxygen atoms and also the formation of different chemical bonds such as Fe-O, B-N, B-O and the ternary BNO phase. This latter phase is predominant in the deposited films as observed in the B 1s and N 1s core level spectra. As the RF power increases, the contribution of N-B bonds in the as-deposited films decreases. The XRR results show that the mass density of a-FeBN:O thin films increases from 2.6 to 4.12 g/cm3 with increasing the RF power from 150 to 350 W. This behavior is more important for films deposited at RF power higher than 150 W, and has been associated with the enhancement of iron atoms in the film structure. The optical band gap decreases from 3.74 to 3.12 eV with increasing the RF power from 150 to 350 W.  相似文献   
26.
T. Sonoda  S. Nakao  M. Ikeyama 《Vacuum》2009,84(5):666-853
Deposition of Ti/C nano-composite DLC films by magnetron DC sputtering was examined using dual targets of titanium and carbon, in order to in order to investigate the effects of Ti/C nano-composite structure on its mechanical properties such as hardness or physical properties such as electrical resistivity. The deposition of DLC films or Ti/C nano-composite DLC films was respectively carried out in the atmosphere of argon at the pressure of 0.4 Pa by sputtering of only the carbon target or by co-sputtering of both the carbon one and the titanium one. The DLC film obtained in this study looked semitransparent and dark brown, while the Ti/C nano-composite DLC one looked metallic and light gray. According to Raman spectroscopy, a typical spectrum for DLC was detected for the metal-like titanium containing composite DLC films even though it's intensity was rather small. And it was found that the G band slightly shifted to higher wave numbers and the shoulder D band was enhanced, compared to the spectrum for the DLC films. Furthermore, based on both the indentation hardness and the electrical resistivity of the obtained films, it was assumed that the miniaturization of titanium phase might bring the increase in hardness.  相似文献   
27.
TaN-Cu nanocomposite films, were deposited by reactive co-sputtering on Si and tool steel substrates. The films were then annealed using RTA (Rapid Thermal Annealing) at 400 °C for 2, 4, 8 min respectively to induce the nucleation and growth of Cu particles in the TaN matrix and on the film surface. SSPM (Scanning Surface Potential Microscopy) and SEM (Scanning Electron Microscopy) were applied to examine the Cu nano-particles that emerged on the surface of TaN-Cu thin films. Pin-on-Disk tribometer was used to study the effect of annealing on the films' tribological properties. The results reveal that annealing by RTA can cause Cu nano-particles to emerge on the TaN surface. Consequently, hardness and friction coefficients will change depending on annealing conditions, Cu content, and/or Cu particle emergence.  相似文献   
28.
采用共溅射法,于不同温度下在玻璃基底上沉积Ag-Cu薄膜。X衍射(XRD)分析表明,当基片温度为100℃和200 ℃时,形成的是Ag-Cu亚稳态合金;而当温度升高到300℃以上时,形成的则是Ag和Cu的分离相。通过X光电子能谱(XPS)法测量不同温度下沉积薄膜的Ag和Cu原子含量比,发现基片加热温度对沉积元素的相对比有一定影响。原子力显微镜(AFM)检测表明,随着加热温度的升高,薄膜表面的粗糙度增加,颗粒尺寸增大。分析认为,在温度较低时,原子热激活能相对较低,不足以发生迁移,形成Ag-Cu亚稳态合金;而当温度较高时,原子热激活能增大,容易发生迁移,此时Ag和Ag、 Cu和Cu各自结合的能量最低,形成Ag和Cu的分离相。  相似文献   
29.
Effective top-side thin film encapsulation for organic light-emitting devices (OLEDs) was achieved by deposition of a multi-layer water diffusion barrier stack to protect the device against moisture permeation. The barrier stack was formed by alternative depositions of co-oxide and fluorocarbon (CFx) films. The co-oxide layer was fabricated by magnetron co-sputtering of silicon dioxide (SiO2) and aluminum oxide (Al2O3). While the CFx layer was formed by plasma enhanced chemical vapor deposition. The water vapor transmission rate of the optimized diffusion barrier stack can be down to 10− 6 g/m2/day. The OLEDs encapsulated with the multilayer stack have been shown to have operation lifetime of over 18,000 h which is nearly the same as devices with conventional glass-cover encapsulation.  相似文献   
30.
Gold–silver alloy nanoparticles with various Au concentrations in sputtered SiO2 thin films were synthesized by using RF reactive magnetron co-sputtering and then heat-treated in reducing Ar + H2 atmosphere at different temperatures. The UV–visible absorption spectra of the bimetallic systems confirmed the formation of alloy nanoparticles. The optical absorption of the Au–Ag alloy nanoparticles exhibited only one plasmon resonance absorption peak located at 450 nm between the absorption bands of pure Au and Ag nanoparticles at 400 and 520 nm, respectively, for the thin films annealed at 800 °C. The maximum absorption wavelength of the surface plasmon band showed a red shift with increasing Au content. XPS results indicated that the alloys were in metallic state, and they had a greater tendency to lose electrons as compared to their corresponding monometallic state. Moreover, the positive and negative shift of the Au(4f) core-level binding energies was observed for low and high Au concentration, respectively. Also a negative shift of the Ag(3d) binding energies was increased by increasing Au concentration. Diffusion of the particles toward the surface by increasing the temperature has also been illustrated by AFM images. Based on AFM observations, we have found that the particle size reduced from 35 to 20 nm by increasing the annealing temperature from 600 to 800 °C, while particle size increased by increasing Au concentration in films. In addition, lateral force microscopy (LFM) analysis showed that the alloy particles were uniformly distributed on the surface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号