全文获取类型
收费全文 | 248篇 |
免费 | 0篇 |
专业分类
电工技术 | 16篇 |
综合类 | 3篇 |
化学工业 | 27篇 |
机械仪表 | 3篇 |
建筑科学 | 13篇 |
能源动力 | 165篇 |
轻工业 | 2篇 |
水利工程 | 1篇 |
石油天然气 | 2篇 |
无线电 | 2篇 |
一般工业技术 | 9篇 |
原子能技术 | 2篇 |
自动化技术 | 3篇 |
出版年
2024年 | 2篇 |
2022年 | 2篇 |
2021年 | 5篇 |
2020年 | 5篇 |
2019年 | 6篇 |
2018年 | 2篇 |
2017年 | 1篇 |
2016年 | 4篇 |
2015年 | 2篇 |
2014年 | 7篇 |
2013年 | 13篇 |
2012年 | 5篇 |
2011年 | 31篇 |
2010年 | 35篇 |
2009年 | 34篇 |
2008年 | 21篇 |
2007年 | 18篇 |
2006年 | 6篇 |
2005年 | 4篇 |
2004年 | 10篇 |
2003年 | 5篇 |
2002年 | 1篇 |
2001年 | 5篇 |
2000年 | 2篇 |
1999年 | 4篇 |
1998年 | 1篇 |
1997年 | 1篇 |
1995年 | 1篇 |
1994年 | 2篇 |
1993年 | 1篇 |
1992年 | 2篇 |
1990年 | 3篇 |
1989年 | 2篇 |
1987年 | 1篇 |
1985年 | 1篇 |
1982年 | 2篇 |
1980年 | 1篇 |
排序方式: 共有248条查询结果,搜索用时 15 毫秒
21.
Beno Sternlicht 《Energy Conversion and Management》1982,22(4):361-373
As energy costs increase, harnessing of waste energy in an efficient manner is becoming increasingly more important. This paper presents a new perspective on the use of Rankine cycles as applied to thermal energy from industrial waste heat and renewable sources. It shows that Rankine cycles can efficiently and in a cost-effective manner convert waste energy to power, heat pumping and cogeneration. Economics of waste energy recovery are discussed and examples of several applications are cited. It points out that life cycle cost of equipment is a more rational purchasing criteria than the first cost. Conclusions and recommendations are given for a more rapid commercialization on these new energy conserving systems. 相似文献
22.
《International Journal of Hydrogen Energy》2020,45(58):34089-34098
Utilization of Natural gas and Hydrogen to support current and future building energy needs to offset the total electric demand while improving the grid resiliency and energy efficiency was investigated. Demand side energy management will play an important role in efficiently managing the available energy resources. Performance assessment of different power generation and energy management configurations is presented in this paper. Development of solutions in addressing grid resiliency by providing the ability to design suitable configurations for meeting individual building energy needs is discussed. Primary movers (PM) such as internal combustion engines (ICE) and fuel cells (FC) along with small scale auxiliary renewable energy source such as photovoltaics (PV) were considered. Key attributes of total carbon foot-print, life cycle costs including capital and operational expenditure, electric grid offset or peak shaving capability, thermal energy availability and its further potential to offset total electric demand, and primary energy intensity are analyzed and discussed in detail. 相似文献
23.
A novel concept for integrating fuel cells with desalination systems is proposed and investigated in this work. Two unique case studies are discussed — the first involving a hybrid system with a reverse osmosis (RO) unit and the second — integrating with a thermal desalination process such as multi-stage flash (MSF). The underlying motivation for this system integration is that the exhaust gas from a hybrid power plant (fuel cell/turbine system) contains considerable amount of thermal energy, which may be utilized for desalination units. This exhaust heat can be suitably used for preheating the feed in desalination processes such as reverse osmosis which not only increases the potable water production, but also decreases the relative energy consumption by approximately 8% when there is an increase of just 8°C rise in temperature. Additionally, an attractive hybrid system application which combines power generation at 70%+ system efficiency with efficient waste heat utilization is thermal desalination. In this work, it is shown that the system efficiency can be raised appreciably when a high-temperature fuel cell co-generates DC power in-situ with waste heat suitable for MSF. Results indicate that such hybrid system could show a 5.6% increase in global efficiency. Such combined hybrid systems have overall system efficiencies (second-law base) exceeding those of either fuel-cell power plants or traditional desalination plants. 相似文献
24.
The main purpose of our study was to use an experimental method and system dynamic simulation technology to examine a proton exchange membrane fuel cell thermoelectric cogeneration system that provides both high‐quality electric power and heated water. In the second part of our study, we experimentally verified the development of key components of the fuel cell and conducted a comprehensive analysis of the subsystems, including the fuel cell module, hydrogen supply subsystem, air supply subsystem, humidifier subsystem, and heat recovery subsystem. Finally, we integrated all of the subsystems into a PEM fuel cell thermoelectric cogeneration system and performed efficiency tests and analysis of power generation, heat recovery, and thermoelectric cogeneration. After comparing this system's efficiency results using simulation and experimentation, we determined that the accuracy of the simulation values when compared to the experimental values was >95%, showing that this system's simulation nearly approached the efficiency of the actual experiment, including more than 53% for power generation efficiency, more than 39% for heat recovery efficiency, and more than 93% for thermoelectric cogeneration combined efficiency. 相似文献
25.
The paper evaluates the thermodynamical, economical and environmental characteristics of a cogeneration system composed of a gas turbine and a waste heat boiler (system A). Two other systems for increasing power generating efficiency are also evaluated, namely systems B and C, which are constructed by incorporating a regenerative cycle and a dual fluid cycle, respectively, into system A. It has been estimated that system C satisfies an environmental constraint that the nitrogen oxide density exhausted should be less than 100 parts in 106, and that systems A and B also satisfy this constraint if a small amount of steam is injected into the combustor. The power generating efficiencies of systems A and B, in this case, and that of system C have been estimated to be 33.5%, 38.5% and 41.2%, respectively; i.e. the efficiencies of systems B and C can be improved noticeably compared with that of system A. The economics of these systems have also been evaluated based on the value of a profit index, and the systems are all estimated to be economically viable under the conditions assumed. As a result, it has been shown that it is possible to construct cogeneration systems with satisfactory characteristics of both environmental protection and profitability if system A is used in districts where the heat demand is large, system C in districts where the heat demand is small, and system B in districts with intermediate heat demand. 相似文献
26.
In present study the exergy and economical analysis of a cogeneration plant system in Turkey (Esenyurt Thermic Power Plant) was performed based on the measured data during the operation time of the system. First and second laws of thermodynamics are adapted to the measured data. Furthermore, fuel-utilization efficiency, rate of power heat and rate of process heat are determined. The system is considered as a steady-state open thermodynamic system. 相似文献
27.
Combined production of electricity, heat and cooling power in trigeneration represents a key option for the development of high-efficiency and cost-effective integrated energy systems. The complexity of the possible plant schemes calls for the adoption of general models handling multiple interconnected components and energy flows of various typologies. This paper presents a comprehensive input–output matrix approach aimed at modelling small-scale trigeneration equipment taking into account the interactions among plant components and external energy networks. Starting from the definitions of specific efficiency matrices for each plant component and from a matrix representation of the relevant interconnections, an overall efficiency matrix representing the whole plant is constructed. This construction is carried out by means of an original procedure, suitable for automatic and symbolic implementation, which, exploiting graph theory concepts, explores the tree formed by the backward paths from outputs to inputs. The proposed formulation maintains the separation among the individual energy vectors, each of which can be associated to its time-dependent price, providing the basic framework for formulating optimization problems concerning management of trigeneration systems within an energy market context. A numerical example referred to the optimal operation of a composite scheme with absorption and electric chillers is illustrated and discussed. The results obtained show the modelling effectiveness of the proposed matrix formulation. 相似文献
28.
H. Adachi S. Ahmed S.H.D. Lee D. Papadias R.K. Ahluwalia J.C. Bendert S.A. Kanner Y. Yamazaki 《Journal of power sources》2009
A system model was used to develop an autothermal reforming fuel processor to meet the targets of 80% efficiency (higher heating value) and start-up energy consumption of less than 500 kJ when operated as part of a 1-kWe natural-gas fueled fuel cell system for cogeneration of heat and power. The key catalytic reactors of the fuel processor – namely the autothermal reformer, a two-stage water gas shift reactor and a preferential oxidation reactor – were configured and tested in a breadboard apparatus. Experimental results demonstrated a reformate containing ∼48% hydrogen (on a dry basis and with pure methane as fuel) and less than 5 ppm CO. The effects of steam-to-carbon and part load operations were explored. 相似文献
29.
In this paper we focus on energy flows and specifically on the complex interactions between heat and power generation and use in steam systems along with combustible wastes of the process. Our objective is to present a systematic methodology for the quick targeting of power cogeneration potential in steam systems ahead of designing the power generation network. The devised approach makes effective utilization of combustible wastes and reconciles the use and dispatch of process fuel sources, heating and non-heating uses of steam, and power generation. The new concept of extractable energy is introduced to facilitate a simple calculation of cogeneration potential in the process. Balances around steam headers are used to identify surpluses and deficits. Next, surplus and deficit composite curves are constructed to identify feasible transfers of extractable energy. The result is the identification of the cogeneration target and excess steam that can be used in condensing turbines. This methodology takes a holistic view of the process and can easily be combined with other mass and energy integration techniques. It specifically accommodates both (a) production objectives (mass integration) and (b) heat recovery network targeting and utility selection (energy integration). An example problem is presented to illustrate the methodology. 相似文献
30.
热电联产是节约能源、保护环境的一种重要供热方式,热电单耗分摊的重要性不容置疑。本文用建立在“现代节能理论”基础上的单耗分析理论对热电单耗进行分析,并与传统方法进行比较,得出合理的结论。 相似文献