首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   365篇
  免费   4篇
  国内免费   5篇
电工技术   1篇
综合类   12篇
化学工业   173篇
金属工艺   8篇
机械仪表   10篇
建筑科学   19篇
能源动力   90篇
轻工业   24篇
水利工程   1篇
石油天然气   3篇
无线电   3篇
一般工业技术   13篇
冶金工业   1篇
原子能技术   3篇
自动化技术   13篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   4篇
  2019年   7篇
  2018年   3篇
  2017年   8篇
  2016年   9篇
  2015年   9篇
  2014年   17篇
  2013年   66篇
  2012年   11篇
  2011年   31篇
  2010年   14篇
  2009年   32篇
  2008年   24篇
  2007年   16篇
  2006年   13篇
  2005年   19篇
  2004年   16篇
  2003年   13篇
  2002年   15篇
  2001年   5篇
  2000年   2篇
  1999年   4篇
  1998年   2篇
  1997年   5篇
  1996年   5篇
  1995年   3篇
  1993年   2篇
  1992年   5篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
排序方式: 共有374条查询结果,搜索用时 15 毫秒
11.
The demand of high speed and miniaturization of electronic components results in increased power dissipation requirement for thermal management. In this work, the effects of porosity (ε), pore density (PPI) and air velocity on the heat-transfer characteristics of aluminum-foam heat sinks are investigated experimentally. The phenomenon of non-local thermal equilibrium (NLTE) is also observed and reported. Results show that the Nu increases as the pore density increases, due to the fact that aluminum foam with a larger pore density has a larger heat-transfer area. The Nusselt number also increases with the increase of porosity due to the same reason. It is noted that temperatures of the solid and gas phases of the aluminum foam decrease as Reynolds number increases, caused by the increased convective heat-transfer rate at higher Reynolds number. The deduced temperature difference between the solid and gas phases clearly indicates the existence of non-local thermal equilibrium condition within the aluminum-foam heat sink. The increase of the porosity and the pore density enhances the phenomenon of non-local thermal equilibrium. The temperature difference increases with the decrease of Reynolds number and the distance away from the heat source.  相似文献   
12.
The effect of inclination of electrochemical cell with plane-parallel electrodes in the gravitational field on the limiting current of electrochemical reaction is theoretically analyzed by the example of iodine-iodide system. The quantitative dependences of the limiting current on the angle α between the electrodes and the horizontal are obtained. It is shown that this effect is associated with the variation in the distributions of solution concentration and hydrodynamic velocity with α. It is found that the ratio between the electrode's length and the interelectrode distance is of great importance.  相似文献   
13.
14.
Drying-induced stresses in elastic and viscoelastic saturated materials   总被引:1,自引:0,他引:1  
The paper presents a theoretical analysis of stresses generated during convective drying of kaolin, based on elastic and viscoelastic models. The equations of these models were solved analytically for a cylindrically shaped sample; the distribution and evolution of the radial and circumferential stresses are illustrated in diagrams. The acoustic emission method was used in experimental tests for identification on line of the time period during which the stresses reach their maximal values. A better correlation has been found between the experimental tests and the theoretical predictions obtained on the basis of the viscoelastic model.  相似文献   
15.
The effects of operational conditions on the drying performance in closed superheated steam drying were examined theoretically and experimentally. The vapor generated from the sample was circulated in the drying chamber. In the theoretical analysis, the replacement of air with vapor in drying chamber and the convective vapor transfer in sample were considered. At the start of drying, the drying chamber was filled with air. As the drying proceeded, the air was replaced with the vapor generated from sample. The calculated results explained the characteristics of experimental data. The pore diameter of sample had little effect on the drying characteristics. During the internal evaporation period, the evaporation occurred in the narrow zone, which moved from the surface to the bottom of sample. The convective vapor transfer in sample had a significant influence on the drying performance. The excess increments in temperature and velocity of drying gas hardly contributed to shortening the drying time.  相似文献   
16.
With coupled discrete element (DEM)–computational fluid dynamics (CFD) simulations, drying processes can be simultaneously described on the system scale while resolving detailed subprocesses on the particle scale. In this contribution, DEM-CFD simulations are used to analyze the transient heat and mass transfer in mechanically agitated particle beds during drying. Results are compared to convective batch-drying experiments with silica gel and beech wood spheres and mixing effects are studied in detail. A good agreement with the measurements of both single-particle and particle bed drying is achieved by resolving heat and moisture transport three-dimensionally inside each particle.  相似文献   
17.
Abstract

A conveyor-belt dryer for picrite has been modeled mathematically in this work. The necessary parameters for the system of equations were obtained from regression analysis of thin-layer drying data. The convective drying experiments were carried out at temperatures of 40, 60, 80, and 100°C and air velocities of 0.5 and 1.5 m/sec. To analyze the drying behavior, the drying curves were fitted to different semi-theoretical drying kinetics models such as those of Lewis, Page, Henderson and Pabis, Wang and Singh, and the decay models. The decay function (for second order reactions) gives better results and describes the thin layer drying curves quite well. The effective diffusivity was also determined from the integrated Fick's second law equation and correlated with temperature using an Arrhenius-type model. External heat and mass transfer coefficients were refitted to the empirical correlation using dimensionless numbers (J h , J D  = m · Re n ) and their new coefficients were optimized as a function of temperature. The internal mass transfer coefficient was also correlated as a function of moisture content, air temperature, and velocity.  相似文献   
18.
A new approach to experimental evaluation of mass transfer resistances from drying experiments is proposed. A composite model of ginseng root mass transfer, based on one-dimensional treatment of diffusive and convective resistances as additive components of radial mass transfer, was developed. Mass transfer resistance was evaluated from a linear relationship between measured flux and thermodynamic driving force. Partitioning of mass transfer resistance into diffusive (core and skin) and convective (air boundary layer) resistances was done by modification of boundary conditions: (a) high (3 m/s) and low (1 m/s) air velocity; (b) skin removal. Total radial mass transfer resistance was evaluated as (146 ± 6) ? 106 s/m at 38°C, significantly decreasing to (48 ± 1.5) ? 106 s/m at 50°C. Boundary resistance was evaluated as (54 ± 5) ? 106 s/m at 38°C and (26 ± 3) ? 106 s/m at 50°C in the entire range of moisture contents. Core and skin resistances were both moisture dependent: core resistance increased from initial value of (6 ± 1) ? 106 s/m to (61 ± 6) ? 106 s/m toward the end of drying, whereas skin resistance decreased from initial value of (92 ± 5) ? 106 s/m to (25 ± 5) ? 106 s/m at the endpoint of drying. However, the sum of core and skin resistances, which represents composite diffusive resistance of intact ginseng root, was constant and independent of moisture content: (91 ± 4.6) ? 106 s/m at 38°C and (22 ± 1.6) ? 106 s/m at 50°C. The relationship between mass transfer resistance R and drying rate factor k = 1/RC was used for verification of the composite model.  相似文献   
19.
《Drying Technology》2013,31(7):1287-1303
The effects of operational conditions on the drying performance in closed superheated steam drying were examined theoretically and experimentally. The vapor generated from the sample was circulated in the drying chamber. In the theoretical analysis, the replacement of air with vapor in drying chamber and the convective vapor transfer in sample were considered. At the start of drying, the drying chamber was filled with air. As the drying proceeded, the air was replaced with the vapor generated from sample. The calculated results explained the characteristics of experimental data. The pore diameter of sample had little effect on the drying characteristics. During the internal evaporation period, the evaporation occurred in the narrow zone, which moved from the surface to the bottom of sample. The convective vapor transfer in sample had a significant influence on the drying performance. The excess increments in temperature and velocity of drying gas hardly contributed to shortening the drying time.  相似文献   
20.
《Drying Technology》2013,31(7):1695-1708
Abstract

Traditionally, the measurement of shrinkage occurring during drying is performed by destructive or poorly accurate techniques such as volume displacement methods. Cracks detection and quantification are realised either by destructive techniques or sophisticated but expensive nondestructive ones (NMR imaging). X-ray microtomography in combination with image analysis provides an accurate, nondestructive and easy to use technique to determine simultaneously shrinkage and crack extent. Results reported in this article concern drying of wastewater sludges whose management will become a real challenge in the years to come. These results show a clear relation between drying kinetics and crack development. This could be related to the development of internal diffusional limitations inducing moisture gradients and mechanical stresses leading to cracks formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号