首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3841篇
  免费   815篇
  国内免费   32篇
电工技术   13篇
综合类   65篇
化学工业   3003篇
金属工艺   19篇
机械仪表   42篇
建筑科学   40篇
矿业工程   3篇
能源动力   318篇
轻工业   124篇
水利工程   2篇
石油天然气   54篇
武器工业   1篇
无线电   238篇
一般工业技术   680篇
冶金工业   14篇
原子能技术   46篇
自动化技术   26篇
  2024年   29篇
  2023年   143篇
  2022年   87篇
  2021年   271篇
  2020年   239篇
  2019年   214篇
  2018年   231篇
  2017年   231篇
  2016年   194篇
  2015年   224篇
  2014年   236篇
  2013年   215篇
  2012年   249篇
  2011年   205篇
  2010年   184篇
  2009年   164篇
  2008年   175篇
  2007年   177篇
  2006年   185篇
  2005年   165篇
  2004年   134篇
  2003年   140篇
  2002年   112篇
  2001年   76篇
  2000年   47篇
  1999年   55篇
  1998年   54篇
  1997年   63篇
  1996年   30篇
  1995年   30篇
  1994年   32篇
  1993年   28篇
  1992年   11篇
  1991年   8篇
  1990年   10篇
  1989年   5篇
  1988年   6篇
  1987年   4篇
  1986年   2篇
  1985年   5篇
  1984年   6篇
  1983年   1篇
  1982年   4篇
  1981年   1篇
  1979年   1篇
  1951年   5篇
排序方式: 共有4688条查询结果,搜索用时 15 毫秒
31.
Sorption-based atmospheric water generation (SAWG) is a promising strategy to alleviate the drinkable water scarcity of arid regions. However, the high-water production efficiency remains challenging due to the sluggish sorption/desorption kinetics. Herein, a composite sorbent@biomimetic fibrous membrane (PPy-COF@Trilayer-LiCl) is reported by mimicking nature's Murray networks, which exhibits outstanding water uptake performance of 0.77–2.56 g g−1 at a wide range of relative humidity of 30%–80% within 50 min and fast water release capacity of over 95% adsorbed water that can be released within 10 min under one sun irradiation. The superior sorption–desorption kinetics of PPy-COF@Trilayer-LiCl are enabled by the novel hierarchically porous structure, which is also the critical factor to lead a directional rapid water transport and vapor diffusion. Moreover, as a proof-of-concept demonstration, a wearable SAWG device is established, which can operate 10 sorption–desorption cycles per day in the outdoor condition and produce a high yield of clean water reaching up to 3.91 kg m−2 day−1. This study demonstrates a novel strategy for developing advanced solar-driven SAWG materials with efficient water sorption–desorption properties.  相似文献   
32.
A novel positively K+‐responsive membrane with functional gates driven by host‐guest molecular recognition is prepared by grafting poly(N‐isopropylacrylamide‐co‐acryloylamidobenzo‐15‐crown‐5) (poly(NIPAM‐co‐AAB15C5)) copolymer chains in the pores of porous nylon‐6 membranes with a two‐step method combining plasma‐induced pore‐filling grafting polymerization and chemical modification. Due to the cooperative interaction of host‐guest complexation and phase transition of the poly(NIPAM‐co‐AAB15C5), the grafted gates in the membrane pores could spontaneously switch from “closed” state to “open” state by recognizing K+ ions in the environment and vice versa; while other ions (e.g., Na+, Ca2+ or Mg2+) can not trigger such an ion‐responsive switching function. The positively K+‐responsive gating action of the membrane is rapid, reversible, and reproducible. The proposed K+‐responsive gating membrane provide a new mode of behavior for ion‐recognizable “smart” or “intelligent” membrane actuators, which is highly attractive for controlled release, chemical/biomedical separations, tissue engineering, sensors, etc.  相似文献   
33.
Passive radiative cooling technology can cool down an object by reflecting solar light and radiating heat simultaneously. However, photonic radiators generally require stringent and nanoscale‐precision fabrication, which greatly restricts mass production and renders them less attractive for large‐area applications. A simple, inexpensive, and scalable electrospinning method is demonstrated for fabricating a high‐performance flexible hybrid membrane radiator (FHMR) that consists of polyvinylidene fluoride/tetraethyl orthosilicate fibers with numerous nanopores inside and SiO2 microspheres randomly distributed across its surface. Even without silver back‐coating, a 300 µm thick FHMR has an average infrared emissivity >0.96 and reflects ≈97% of solar irradiance. Moreover, it exhibits great flexibility and superior strength. The daytime cooling performance this device is experimentally demonstrated with an average radiative cooling power of 61 W m?2 and a temperature decrease up to 6 °C under a peak solar intensity of 1000 W m?2. This performance is comparable to those of state‐of‐the‐art devices.  相似文献   
34.
Surface modification of nanomaterials is essential for their biomedical applications owing to their passive immune clearance and damage to reticuloendothelial systems. Recently, a cell membrane‐coating technology has been proposed as an ideal approach to modify nanomaterials owing to its facile functionalized process and good biocompatibility for improving performances of synthetic nanomaterials. Here, recent advances of cell membrane‐coated nanomaterials are reviewed based on the main biological functions of the cell membrane in living cells. An overview of the cell membrane is introduced to understand its functions and potential applications. Then, the applications of cell membrane‐coated nanomaterials based on the functions of the cell membrane are summarized, including physical barrier with selective permeability and cellular communication via information transmission and reception processes. Finally, perspectives of biomedical applications and challenges about cell membrane‐coated nanomaterials are discussed.  相似文献   
35.
Membranes have seen a growing role in mitigating the extensive energy used for gas separations. Further expanding their effectiveness in reducing the energy penalty requires a fast separation process via a facile technique readily integrated with industrial membrane formation platforms, which has remained a challenge. Here, an ultrapermeable polyimide/metal‐organic framework (MOF) hybrid membrane is reported, enabling ultrafast gas separations for multiple applications (e.g., CO2 capture and hydrogen regeneration) while offering synthetic enhanced compatibility with the current membrane manufacturing processes. The membranes demonstrate a CO2 and H2 permeability of 2494 and 2932 Barrers, respectively, with a CO2/CH4, H2/CH4, and H2/N2 selectivity of 29.3, 34.4, and 23.8, respectively, considerably surpassing the current Robeson permeability–selectivity upper bounds. At a MOF loading of 55 wt%, the membranes display a record‐high 16‐fold enhancement of H2 permeability comparing with the neat polymer. With mild membrane processing conditions (e.g., a heating temperature less than 80 °C) and a performance continuously exceeding Robeson upper bounds for over 5300 h, the membranes exhibit enhanced compatibility with state‐of‐the‐art membrane manufacturing processes. This performance results from intimate interactions between the polymer and MOFs via extensive, direct hydrogen bonding. This design approach offers a new route to ultraproductive membrane materials for energy‐efficient gas separations.  相似文献   
36.
桉木化学浆漂白废水污染负荷及其超滤处理特性的研究   总被引:1,自引:0,他引:1  
对按木化学浆漂白废水的污染负荷及其超滤处理特性进行了研究。结果表明,CEH三段漂白废水的主要污染来自C、E两段,占总负荷的80%左右。用本试验的PS膜进行超滤处理后,漂白废水的BOD5值达到国家二级排放标准,其余指标均达到一级排放标准。  相似文献   
37.
All‐dielectric metasurfaces have become a new paradigm for flat optics as they allow flexible engineering of the electromagnetic space of propagating waves. Such metasurfaces are usually composed of individual subwavelength elements embedded into a host medium or placed on a substrate, which often diminishes the quality of the resonances. The substrate imposes limitations on the metasurface functionalities, especially for infrared and terahertz frequencies. Here a novel concept of membrane Huygens' metasurfaces is introduced. The metasurfaces feature an inverted design, and they consist of arrays of holes made in a thin membrane of high‐index dielectric material, with the response governed by the electric and magnetic Mie resonances excited within dielectric domains of the membrane. Highly efficient transmission combined with the 2π phase coverage in the freestanding membranes is demonstrated. Several functional metadevices for wavefront control are designed, including beam deflector, a lens, and an axicon. Such membrane metasurfaces provide novel opportunities for efficient large‐area metadevices, whose advanced functionality is defined by structuring rather than by chemical composition.  相似文献   
38.
Inorganic/organic dielectric composites are very attractive for high energy density electrostatic capacitors. Usually, linear dielectric and ferroelectric materials are chosen as inorganic fillers to improve energy storage performance. Antiferroelectric (AFE) materials, especially single-crystalline AFE oxides, have relatively high efficiency and higher density than linear dielectrics or ferroelectrics. However, adding single-crystalline AFE oxides into polymers to construct composite with improved energy storage performance remains elusive. In this study, high-quality freestanding single-crystalline PbZrO3 membranes are obtained by a water-soluble sacrificial layer method. They exhibit classic AFE behavior and then 2D–2D type PbZrO3/PVDF composites with the different film thicknesses of PbZrO3 (0.1-0.4 µm) is constructed. Their dielectric properties and polarization response improve significantly as compared to pure PVDF and are optimized in the PbZrO3(0.3 µm)/PVDF composite. Consequently, a record-high energy density of 43.3 J cm−3 is achieved at a large breakdown strength of 750 MV m−1. Phase-field simulation indicates that inserting PbZrO3 membranes effectively reduces the breakdown path. Single-crystalline AFE oxide membranes will be useful fillers for composite-based high-power capacitors.  相似文献   
39.
The intrinsic hydrophilicity of conventional dressings cannot achieve effective management of excessive biofluid around the wound bed, which inevitably causes infection and hinders wound healing. In addition, present dressings such as medical gauze or band aids have a limited stretching capability, which does not comply well with the skin deformation during muscle movement, thus impacting patient comfort. Herein, a Janus wound dressing is reported by assembling an external hydrophobic (HP) adhesive tape, a filter paper, and a polydimethylsiloxane (PDMS) Janus film. The PDMS Janus film as the primary dressing can unidirectionally remove biofluid away from the wound bed. The mechanism of the unidirectional biofluid transport is investigated, demonstrating that the stretching or bending of the Janus dressing is beneficial for unidirectional biofluid draining. It indicates that the Janus PDMS film has potential for practical applications on stretched or bended skin surface. In addition, in order to prevent bacterial infection, amoxicillin powder is uniformly encapsulated on the HP layer of Janus film, resulting in faster wound healing. This study is valuable for designing and fabricating next-generation dressings with high performance for clinical applications.  相似文献   
40.
Incorporation of defects in metal–organic frameworks (MOFs) offers new opportunities for manipulating their microporosity and functionalities. The so-called “defect engineering” has great potential to tailor the mass transport properties in MOF/polymer mixed matrix membranes (MMMs) for challenging separation applications, for example, CO2 capture. This study first investigates the impact of MOF defects on the membrane properties of the resultant MOF/polymer MMMs for CO2 separation. Highly porous defect-engineered UiO-66 nanoparticles are successfully synthesized and incorporated into a CO2-philic crosslinked poly(ethylene glycol) diacrylate (PEGDA) matrix. A thorough joint experimental/simulation characterization reveals that defect-engineered UiO-66/PEGDA MMMs exhibit nearly identical filler–matrix interfacial properties regardless of the defect concentrations of their parental UiO-66 filler. In addition, non-equilibrium molecular dynamics simulations in tandem with gas transport studies disclose that the defects in MOFs provide the MMMs with ultrafast transport pathways mainly governed by diffusivity selectivity. Ultimately, MMMs containing the most defective UiO-66 show the most enhanced CO2/N2 separation performance—CO2 permeability = 470 Barrer (four times higher than pure PEGDA) and maintains CO2/N2 selectivity = 41—which overcomes the trade-off limitation in pure polymers. The results emphasize that defect engineering in MOFs would mark a new milestone for the future development of optimized MMMs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号