首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6153篇
  免费   35篇
  国内免费   40篇
电工技术   105篇
综合类   48篇
化学工业   1438篇
金属工艺   85篇
机械仪表   204篇
建筑科学   52篇
矿业工程   13篇
能源动力   3496篇
轻工业   21篇
水利工程   1篇
石油天然气   79篇
武器工业   15篇
无线电   45篇
一般工业技术   166篇
冶金工业   27篇
原子能技术   282篇
自动化技术   151篇
  2024年   3篇
  2023年   95篇
  2022年   174篇
  2021年   249篇
  2020年   223篇
  2019年   189篇
  2018年   148篇
  2017年   172篇
  2016年   139篇
  2015年   104篇
  2014年   307篇
  2013年   300篇
  2012年   289篇
  2011年   643篇
  2010年   541篇
  2009年   441篇
  2008年   417篇
  2007年   391篇
  2006年   226篇
  2005年   184篇
  2004年   160篇
  2003年   131篇
  2002年   103篇
  2001年   99篇
  2000年   72篇
  1999年   76篇
  1998年   56篇
  1997年   50篇
  1996年   46篇
  1995年   25篇
  1994年   24篇
  1993年   26篇
  1992年   18篇
  1991年   24篇
  1990年   19篇
  1989年   12篇
  1988年   17篇
  1987年   11篇
  1986年   5篇
  1985年   5篇
  1984年   5篇
  1983年   4篇
  1981年   2篇
  1980年   2篇
  1978年   1篇
排序方式: 共有6228条查询结果,搜索用时 0 毫秒
81.
Explicit approximate equations for estimating the conversion factor of fuel‐nitrogen into nitric oxide are presented. They depend on the fuel‐nitrogen mole fraction, the initial nitric oxide mole fraction, and the kinetics‐equilibrium mole fraction of nitric oxide. This last parameter expresses a limiting value of fuel‐nitrogen conversion; it includes the complex nitrogen chemistry and depends thus on combustion conditions. Experimental results demonstrate that the kinetics‐equilibrium mole fraction for fuel‐lean and high‐temperature conditions can be well estimated by the chemical‐equilibrium mole fraction, but for lower temperatures the kinetics‐equilibrium mole fraction has to be described by other correlations.  相似文献   
82.
With the development of polymer membranes suitable as proton‐conducting electrolytes, membrane fuel cells are now successfully applied in various areas. Depending on the application, the service life, the power density or other system aspects are optimized. Common to all applications is the requirement to reduce costs, which, however, plays a decisive role especially in passenger cars. The development of the membrane fuel cell has now reached a high technical level, but political flanking measures are still required to launch it on the market. This applies both to the hydrogen infrastructure for fuel cell vehicles and to the promotion of fuel cell‐based combined heat and power generation.  相似文献   
83.
84.
Bismuth oxide in δ-phase is a well-known high oxygen ion conductor and can be used as an electrolyte for intermediate temperature solid oxide fuel cells (IT-SOFCs). 5-10 mol% Ta2O5 are doped into Bi2O3 to stabilize δ-phase by solid state reaction process. One Bi2O3 sample (7.5TSB) was stabilized by 7.5 mol% Ta2O5 and exhibited single phase δ-Bi2O3-like (type I) phase. Thermo-mechanical analyzer (TMA), X-ray diffractometry (XRD), AC impedance and high-resolution transmission electron microscopy (HRTEM) were used to characterize the properties. The results showed that holding at 800-850 °C for 1 h was the appropriate sintering conditions to get dense samples. Obvious conductivity degradation phenomenon was obtained by 1000 h long-term treatment at 650 °C due to the formation of α-Bi2O3 phase and Bi3TaO7, and 〈1 1 1〉 vacancy ordering in Bi3TaO7 structure.  相似文献   
85.
3YSZ green layers approximately 10 μm thick were screen-printed onto 3YSZ substrates and their constrained sintering kinetics were measured at 1100-1350 °C using an optical dilatometer. The densification rates of the same powder in the form of pellets and free-standing films were also measured. The constrained densification rate was greatly retarded compared with the free densification rate at a given temperature and density. The retardation increased with increasing density and temperature and could not be properly accounted for by existing theories of constrained sintering. As a result the apparent activation energy is much lower for constrained sintering (135 ± 20 kJ mol−1) than for free sintering (660 ± 30 kJ mol−1). It is proposed that this is because the constrained microstructure exhibits larger and more widely separated pores at the higher temperatures.  相似文献   
86.
The increase in crude petroleum prices, limited resources of fossil fuels and environmental concerns have led to the search of alternative fuels, which promise a harmonious correlation with sustainable development, energy conservation, efficiency and environmental preservation. Biodiesel is well positioned to replace petroleum-based diesel. Biodiesel is a non-toxic, biodegradable and renewable biofuel. But the outstanding technical problem with biodiesel is that, it is more susceptible to oxidation owing to its exposure to oxygen present in the air and high temperature. This happens mainly due to the presence of varying numbers of double bonds in the free fatty acid molecules. This study evaluates oxidation stability of biodiesel produced from Croton megalocarpus oil. Thermal and Oxidation stability of Croton Oil Methyl Ester (COME) were determined by Rancimat and Thermogravimetry Analysis methods respectively. It was found that oxidation stability of COME did not meet the specifications of EN 14214 (6 h). This study also investigated the effectiveness of three antioxidants: 1,2,3 tri-hydroxy benzene (Pyrogallol, PY), 3,4,5-tri hydroxy benzoic acid (Propyl Gallate, PG) and 2-tert butyl-4-methoxy phenol (Butylated Hydroxyanisole, BHA) on oxidation stability of COME. The result showed that the effectiveness of these antioxidants was in the order of PY > PG > BHA.  相似文献   
87.
Mixed ionic/electronic conductor (MIEC) cathodes with graded composition and microstructures have been fabricated using improved spin-coating technique. Two components, Sm0.2Ce0.8O1.9 (SDC) and Sm0.5Sr0.5CoO3 (SSC), were utilized to prepare the graded MIEC cathode. Graded microstructures, i.e., a SSC-rich outer layer with large interconnected pores and a SDC-rich inner layer with small interconnected pores, were observed. The corresponding single cell had an increase of 13.3% in maximum power density at operating temperature of 600 °C. The present work suggests that the graded MIEC cathode has great potential in improving performance of solid oxide fuel cells operated at lower temperature.  相似文献   
88.
Dispersion conditions for slip (slurry) formulation of a powder mixture of lanthanum strontium manganite (La0.84Sr0.16MnO3 - LSM) and carbon (pore former) in water was studied through detailed zeta-potential and rheological measurements. The zeta potential variation with pH for the aqueous suspensions of only LSM or carbon exhibited a maximum value in alkaline medium (−40 mV to −50 mV at a pH of 10-11), establishing the pH window for their co-dispersion for slurry formulation. A study of the viscosity variation with shear rate for the slurries with varying solid content (in the range of 45-65 wt.%) exhibited pseudo-plastic flow behavior, indicating presence of flocculates in them. The yield stress values obtained from the Casson equation reduced with decreasing solid content, indicating reduction in the flocculate strength. The slip with solid content of 50 wt.% exhibited optimum flow characteristics to form long tubes with uniform wall thickness (wall thickness 2-4 mm and length of 150-200 mm). The tubular specimens formed after controlled carbon burn out and sintering at 1400 °C for 1 h possessed about 35% open porosity. The porosity remained the same upon further sintering at 1400 °C for 8 h.  相似文献   
89.
90.
The fineness of reactants, degree of intermixing and interfacial contact area between fuel and oxidizer comprising of metastable intermolecular composite (MIC) particles are important factors to determine their overall kinetics of burning process. Here, we demonstrate a viable method for enhancing the explosive property of MICs by tailoring the nanostructures of oxidizer located in close proximity to fuel nanoparticles. The measured pressurization rate for a specific sample of solid Al nanoparticle (fuel)-porous CuO nanowire (oxidizer) MICs exploded in a closed vessel was found to be increased by a factor of ~ 10 compared with that for solid Al nanoparticle-solid CuO nanoparticle MICs. In addition, with the assistance of intensive sonication energy, the fabricated porous oxidizer nanowires were disintegrated into oxidizer nanoparticles, which considerably reduced the pressurization rate when they were ignited with fuel nanoparticles. This suggests that the morphology of oxidizer nanostructures from solid nanoparticles (i.e. 0-D) to porous nanowires (i.e. 1-D) play a key role in significantly changing the interfacial contact area with fuel nanoparticles so that nascent oxygen can be produced effectively for promoting the explosive property of the fuel nanoparticles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号