首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   224篇
  免费   7篇
  国内免费   2篇
电工技术   9篇
技术理论   2篇
综合类   1篇
化学工业   7篇
机械仪表   1篇
建筑科学   26篇
矿业工程   1篇
能源动力   158篇
轻工业   8篇
石油天然气   2篇
无线电   2篇
一般工业技术   5篇
冶金工业   1篇
原子能技术   1篇
自动化技术   9篇
  2023年   3篇
  2022年   7篇
  2021年   2篇
  2020年   2篇
  2019年   7篇
  2018年   7篇
  2017年   9篇
  2016年   16篇
  2015年   20篇
  2014年   25篇
  2013年   9篇
  2012年   11篇
  2011年   41篇
  2010年   18篇
  2009年   19篇
  2008年   12篇
  2007年   9篇
  2006年   7篇
  2005年   5篇
  2003年   2篇
  2002年   2篇
排序方式: 共有233条查询结果,搜索用时 31 毫秒
51.
We examine efficiency, costs and greenhouse gas emissions of current and future electric cars (EV), including the impact from charging EV on electricity demand and infrastructure for generation and distribution.Uncoordinated charging would increase national peak load by 7% at 30% penetration rate of EV and household peak load by 54%, which may exceed the capacity of existing electricity distribution infrastructure. At 30% penetration of EV, off-peak charging would result in a 20% higher, more stable base load and no additional peak load at the national level and up to 7% higher peak load at the household level. Therefore, if off-peak charging is successfully introduced, electric driving need not require additional generation capacity, even in case of 100% switch to electric vehicles.GHG emissions from electric driving depend most on the fuel type (coal or natural gas) used in the generation of electricity for charging, and range between 0 g km−1 (using renewables) and 155 g km−1 (using electricity from an old coal-based plant). Based on the generation capacity projected for the Netherlands in 2015, electricity for EV charging would largely be generated using natural gas, emitting 35-77 g CO2 eq km−1.We find that total cost of ownership (TCO) of current EV are uncompetitive with regular cars and series hybrid cars by more than 800 € year−1. TCO of future wheel motor PHEV may become competitive when batteries cost 400 € kWh−1, even without tax incentives, as long as one battery pack can last for the lifespan of the vehicle. However, TCO of future battery powered cars is at least 25% higher than of series hybrid or regular cars. This cost gap remains unless cost of batteries drops to 150 € kWh−1 in the future. Variations in driving cost from charging patterns have negligible influence on TCO.GHG abatement costs using plug-in hybrid cars are currently 400-1400 € tonne−1 CO2 eq and may come down to −100 to 300 € tonne−1. Abatement cost using battery powered cars are currently above 1900 € tonne−1 and are not projected to drop below 300-800 € tonne−1.  相似文献   
52.
One way of producing nearly CO2 free electricity is by using biomass as a combustible. In many cases, removal of CO2 in biomass grown is almost the same as the emissions for the bioelectricity production at the power plant. For this reason, bioelectricity is generally considered CO2 neutral. For large-scale biomass electricity generation two alternatives can be considered: biomass-only fired power plants, or cofiring in an existing coal power plant. Among other factors, two important aspects should be analyzed in order to choose between the two options. Firstly, which is the most appealing alternative if their Greenhouse Gases (GHG) Emissions savings are taken into account. Secondly, which biomass resource is the best, if the highest impact reduction is sought. In order to quantify all the GHG emissions related to each system, a Life Cycle Assessment (LCA) methodology has been performed and all the processes involved in each alternative have been assessed in a cradle-to-grave manner. Sensitivity analyses of the most dominant parameters affecting GHG emissions, and comparisons between the obtained results, have also been carried out.  相似文献   
53.
This paper quantifies the greenhouse gas (GHG) emissions co-benefits associated with water, waste and transportation usage in certified green commercial office buildings in California. The study compares the measured values of water, waste and transportation usage self-reported by office buildings certified under the Leadership in Energy and Environmental Design rating system for Existing Building Operations and Maintenance (LEED EBOM) to baseline values of conventional California office buildings. The green buildings in the LEED EBOM dataset produced 50% less GHGs due to water consumption than baseline buildings, 48% less due to solid waste management, and 5% less due to transportation. If applied to the entire California office building stock, performance typical of the certified green buildings would save 730,038?MgCO2e/yr (metric tonnes) from transportation, 87,601?MgCO2e/yr from water, and 45,280?MgCO2e/yr from waste, for a total potential savings of about 862,920?MgCO2e/yr relative to conventional construction. In addition, buildings earning additional credits for specified performance thresholds for water and waste in the LEED EBOM code attained performance levels even higher than required by the code provisions, suggesting that such code provisions in other contexts may help incentivize larger GHG emissions reductions than anticipated. Specific recommendations are made for building standards and certification schemes.  相似文献   
54.
How to sustain rapid economic and urban growth with minimised detriment to environment is a key challenge for sustainable development and climate change mitigation in developing countries, which face constraints of technical and financial resources scarcity as well as dearth of infrastructure governance capacity. This paper attempts to address this question by investigating the driving forces of transport demand and relevant policy measures that facilitate mitigating GHG emissions in the urban transport sector in Indian cities based on a critical review of the literature. Our overview of existing literature and international experiences suggests that it is critical to improve urban governance in transport infrastructure quality and develop efficient public transport, coupled with integrated land use/transport planning as well as economic instruments. This will allow Indian cities to embark on a sustainable growth pathway by decoupling transport services demand of GHG emissions in the longer term. Appropriate policy instruments need to be selected to reconcile the imperatives of economic and urban growth, aspiration to higher quality of life, improvements in social welfare, urban transport-related energy consumption and GHG emissions mitigation target in Indian cities.  相似文献   
55.
Cities consumed 84% of commercial energy in China, which indicates cities should be the main areas for GHG emissions reduction. Our case study of Shenyang in this paper shows how a clear inventory analysis on GHG emissions at city level can help to identify the major industries and societal sectors for reduction efforts so as to facilitate low-carbon policy-making. The results showed total carbon emission in 2007 was 57 Mt CO2 equivalents (CO2e), of which 41 Mt CO2e was in-boundary emissions and 16 Mt CO2e was out-of-boundary emissions. The energy sector was dominant in the emission inventory, accounting for 93.1% of total emissions. Within energy sector, emissions from energy production industry, manufacturing and construction industry accounted for 88.4% of this sector. Our analysis showed that comparing with geographical boundary, setting system boundary based on single process standard could provide better information to decision makers for carbon emission reduction. After attributing electricity and heating consumption to final users, the resident and commercial sector became the largest emitter, accounting for 28.5% of total emissions. Spatial analysis of emissions showed that industrial districts such as Shenbei and Tiexi had the large potential to reduce their carbon emissions. Implications of results are finally discussed.  相似文献   
56.
The purpose of this work was to estimate GHG emissions and energy balances for the future expansion of sugarcane ethanol fuel production in Mexico with one current and four possible future modalities. We used the life cycle methodology that is recommended by the European Renewable Energy Directive (RED), which distinguished the following five system phases: direct Land Use Change (LUC); crop production; biomass transport to industry; industrial processing; and ethanol transport to admixture plants. Key variables affecting total GHG emissions and fossil energy used in ethanol production were LUC emissions, crop fertilization rates, the proportion of sugarcane areas that are burned to facilitate harvest, fossil fuels used in the industrial phase, and the method for allocation of emissions to co-products. The lower emissions and higher energy ratios that were observed in the present Brazilian case were mainly due to the lesser amount of fertilizers applied, also were due to the shorter distance of sugarcane transport, and to the smaller proportion of sugarcane areas that were burned to facilitate manual harvest. The resulting modality with the lowest emissions of equivalent carbon dioxide (CO2e) was ethanol produced from direct juice and generating surplus electricity with 36.8 kgCO2e/GJethanol. This was achieved using bagasse as the only fuel source to satisfy industrial phase needs for electricity and steam. Mexican emissions were higher than those calculated for Brazil (27.5 kgCO2e/GJethanol) among all modalities. The Mexican modality with the highest ratio of renewable/fossil energy was also ethanol from sugarcane juice generating surplus electricity with 4.8 GJethanol/GJfossil.  相似文献   
57.
Corn (Zea mays L.) cobs are being evaluated as a potential bioenergy feedstock for combined heat and power generation (CHP) and conversion into a biofuel. The objective of this study was to determine corn cob availability in north central United States (Minnesota, North Dakota, and South Dakota) using existing corn grain ethanol plants as a proxy for possible future co-located cellulosic ethanol plants. Cob production estimates averaged 6.04 Tg and 8.87 Tg using a 40 km radius area and 80 km radius area, respectively, from existing corn grain ethanol plants. The use of CHP from cobs reduces overall GHG emissions by 60%–65% from existing dry mill ethanol plants. An integrated biorefinery further reduces corn grain ethanol GHG emissions with estimated ranges from 13.9 g CO2 equiv MJ−1 to 17.4 g CO2 equiv MJ−1. Significant radius area overlap (53% overlap for 40 km radius and 86% overlap for 80 km radius) exists for cob availability between current corn grain ethanol plants in this region suggesting possible cob supply constraints for a mature biofuel industry. A multi-feedstock approach will likely be required to meet multiple end user renewable energy requirements for the north central United States. Economic and feedstock logistics models need to account for possible supply constraints under a mature biofuel industry.  相似文献   
58.
In many regions of Europe, grassland is no longer needed for fodder production as it is not economically viable. However, due to the important role it plays in soil carbon storage, it is imperative that grassland should be maintained. The energetic use of its biomass could be an alternative means of generating income from grassland.The aim of this study is to identify the best permanent grasslands management systems for CHP production with regard to maximizing biogas yields, energy use efficiency and greenhouse gas mitigation potential.A long-term field trial was established in 1994 and managed under various nitrogen fertilizer level regimes and cutting frequencies until 2007. Annual dry matter yields ranged between 9.1 t ha−1 and 10.8 t ha−1.Based on these data the methane yields for the different cutting regimes were calculated. The highest methane yield of 288.4 L kg−1 oDM was calculated for a yearly cutting regime of four cuts.Energy and CO2 balances were calculated to assess the energy efficiency and the global-warming potential of power generation in a CHP plant using biogas produced from the different grassland management systems. The highest net energy yield (48.52 GJ per hectare per year) was calculated for a two-cut regime. Furthermore, the highest CO2 equivalent reduction potential was also documented for a cutting frequency of two cuts per year. In this case a CO2eq mass reduction of 5.1 t per hectare per year could be achieved compared to fossil fuel (consisting of a German power mix and natural gas components) reference systems.  相似文献   
59.
Three ligno-cellulosic substrates representing varying levels of biodegradability (giant reed, GR; fibre sorghum, FS; barley straw, BS) were combined with mild alkaline pre-treatments (NaOH 0.05, 0.10 and 0.15 N at 25 °C for 24 h) plus untreated controls, to study pre-treatment effects on physical-chemical structure, anaerobic digestibility and methane output of the three substrates. In a batch anaerobic digestion (AD) assay (58 days; 35 °C; 4 g VS l−1), the most recalcitrant substrate (GR) staged the highest increase in cumulative methane yield: +30% with NaOH 0.15 N over 190 ml CH4 g−1 VS in untreated GR. Conversely, the least recalcitrant substrate (FS) exhibited the lowest gain (+10% over 248 ml CH4 g−1 VS), while an intermediate behaviour was shown by BS (+15% over 232 ml CH4 g−1 VS). Pre-treatments speeded AD kinetics and reduced technical digestion time (i.e., the time needed to achieve 80% methane potential), which are the premises for increased production capacity of full scale AD plants. Fibre components (cellulose, hemicellulose and acid insoluble lignin determined after acid hydrolysis) and substrate structure (Fourier transform infra-red spectroscopy and scanning electron microscopy) outlined reductions of the three fibre components after pre-treatments, supporting claims of loosened binding of lignin with cellulose and hemicellulose. Hence, mild alkaline pre-treatments were shown to improve the biodegradability of ligno-cellulosic substrates to an extent proportional to their recalcitrance. In turn, this contributes to mitigate the food vs. fuel controversy raised by the use of whole plant cereals (namely, maize) as feedstocks for biogas production.  相似文献   
60.
Carbon emissions of the clothing sales should not be ignored in the process of the garment life cycle carbon emissions. This paper describes in detail how the clothing goes from the factory to consumers, and discusses the source of Greenhouse Gas (GHG) emissions from the two aspects of the traditional marketing and network marketing. And then, this paper mainly discusses the clothing sales carbon footprint, and to calculate the carbon footprint by drawing the clothing from the factory to the flow chart, determining boundary, collecting data and other steps, and then evaluates of the impact according to the results of the analysis. Quantitative evaluation of carbon footprint of clothing sales can help us reduce greenhouse gas emissions, contributes to the sustainable development of clothing industry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号