首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   507篇
  免费   5篇
  国内免费   20篇
电工技术   1篇
综合类   4篇
化学工业   70篇
金属工艺   5篇
能源动力   164篇
无线电   186篇
一般工业技术   97篇
冶金工业   3篇
自动化技术   2篇
  2023年   20篇
  2022年   33篇
  2021年   45篇
  2020年   33篇
  2019年   21篇
  2018年   16篇
  2017年   21篇
  2016年   11篇
  2015年   12篇
  2014年   13篇
  2013年   21篇
  2012年   23篇
  2011年   26篇
  2010年   10篇
  2009年   24篇
  2008年   21篇
  2007年   10篇
  2006年   21篇
  2005年   11篇
  2004年   9篇
  2003年   7篇
  2002年   5篇
  2001年   11篇
  2000年   12篇
  1999年   12篇
  1998年   14篇
  1997年   16篇
  1996年   10篇
  1995年   14篇
  1994年   4篇
  1993年   2篇
  1992年   4篇
  1991年   5篇
  1990年   3篇
  1989年   5篇
  1988年   3篇
  1986年   1篇
  1980年   1篇
  1977年   2篇
排序方式: 共有532条查询结果,搜索用时 15 毫秒
121.
Cu2O/Cu/TiO2 nanotube heterojunction arrays were prepared by assembling Cu@Cu2O core-shell nanoparticles on TiO2 nanotube arrays (NTAs) using a facile impregnation-reduction method. SEM and TEM results show that Cu@Cu2O plate-like nanoparticles with tens of nanometers in size are confined inside TiO2 NTAs. Only the outmost several nanometers of the nanoparticles are Cu2O and the predominant inner of the nanoparticles are Cu metals. Cu L3VV Auger spectra of Cu2O/Cu/TiO2 NTAs suggest that Cu metals are enveloped by at least several nanometers Cu2O on the surface, which further confirms the Cu@Cu2O core shell structure of Cu nanoparticles. The ability of light absorption of Cu2O/Cu/TiO2 NTAs is enhanced. The range of absorption wavelengths changes from 400 to 700 nm due to the surface plasmon response of Cu metals core and Cu2O nanoparticles shell. The photocatalytic hydrogen production rate of Cu2O/Cu/TiO2 heterojunction arrays is enhanced when compared with those of Cu2O/TiO2 NTAs and TiO2 NTAs under UV light. Moreover, a stable H2 generation property was obtained under visible light (λ gt; 400 nm). The Cu metal core is believed to play a key role in the enhancement of photocatalytic properties of Cu2O/Cu/TiO2 nanotube heterojunction arrays.  相似文献   
122.
The zinc oxide (ZnO) and poly(3,4-ethylenedioxythiophene) bis-poly(ethyleneglycol) (PEDOT:PEG) films were deposited on p-Si substrate by sputter and spin coating methods, respectively. An organic/inorganic heterojunction diode having PEDOT:PEG/ZnO on p-Si substrate was fabricated. The barrier height (BH) and the ideality factor values for the device were found to be 0.82 ± 0.01 eV and 1.9 ± 0.01, respectively. It has been seen that the value of BH is significantly larger than those of conventional Au/p-Si metal–semiconductor contacts. The PEDOT:PEG/ZnO/p-Si heterostructure exhibits a non-ideal IV behavior with the ideality factor greater than unity that could be ascribed to the interfacial layer, interface states and series resistance. The modified Norde's function combined with conventional forward IV method was used to extract the parameters including the barrier height and series resistance. At the same time, the physical properties of ZnO and PEDOT:PEG films deposited by sputter and spin coating technique, respectively, were investigated at room temperature. The obtained results indicate that the electrical parameters of the diode are affected by structural properties of ZnO film and PEDOT:PEG organic film.  相似文献   
123.
首先采用射频等离子体增强化学气相沉积技术制备了电导率为0.13 S/cm、晶化率为50%的p型微晶硅,然后制备了μc-Si∶H(p)/c-Si(n)异质结太阳电池。初步研究了硼掺杂比、辉光功率密度、p型硅薄膜的厚度和氢处理时间等这些参数对电池开压的影响。在优化的工艺参数下得到异质结电池最大开路电压Voc为564mV。  相似文献   
124.
Polycrystalline thin films of tin sulphide have been synthesised using spray pyrolysis. The layers grown at a temperature of 350 °C had the orthorhombic crystal structure with a strong (1 1 1) preferred orientation. The films had resistivities 30 Ω cm with an optical energy band gap (Eg) of 1.32 eV. Heterojunction solar cells were fabricated using sprayed SnS as the absorber layer and indium doped cadmium sulphide as the window layer and the devices were characterised to evaluate the junction properties as well as the solar cell performance. The current transport across the junction has been modelled as a combination of tunnelling and recombination. The best devices had solar conversion efficiencies of 1.3% with a quantum efficiency of 70%.  相似文献   
125.
G.G. Untila  T.N. Kost 《Thin solid films》2009,518(4):1345-1245
The effect of conditions of preparation of the In2O3:F(IFO)/(pp+)Si solar cell (SC) by pyrosol method was systematically studied with the goal to maximize its photovoltage. Heterojunction IFO/(pp+)Si SC was obtained with the efficiency of 16.6% and photovoltage of 617 mV as well as the IFO/(n+pp+)Si SC with the efficiency of 19.2% using the following obtained optimal conditions: film-forming solution: 0.2 M InCl3 + 0.05 M NH4F + 0.1 M H2O in methanol; carrier gas — Ar + 5% O2; deposition temperature — 480 °C; duration of deposition — 2 min; two-minute annealing in argon with sprayed methanol at a temperature of 380 °C.  相似文献   
126.
To reduce base resistance of an InP/InGaAs heterojunction bipolar transistor grown by gas-source molecular beam epitaxy, the doping characteristics of carbon-doped InGaAs and the dependence of doping concentration on current gain were investigated. Using a thicker graded base was found to increase current gain significantly, resulting in increased doping level in the InGaAs: C-base layer. In particular, an 80-nm-thick graded base produces a base sheet resistance of 285 Ω/sq and maintains a practically useful current gain of 23 and a high cut-off frequency of 139 GHz.  相似文献   
127.
The solution p-type doping of various conjugated polymers and small molecules via blending with tetrafluorotetracyano-quinodimethane (F4-TCNQ) is investigated to facilitate hole transport for hybrid organic-silicon-nanowire solar cells. Among all, the highly-fluorescent conjugated polymers such as poly(9,9-dioctylfluorenyl-2,7-diyl) (PFO) demonstrate superior transport characteristics, where both the device fill-factor and power conversion efficiency (PCE) are positively correlated with the doping concentration. The best PCE achieves 13.66% from the device with 30% p-doped PFO, compared to the reference at 12.50%. The enhancement is ascribed to the efficient interfacial charge-carrier recombination with minimal energy losses. A vertically graded doping profile is further revealed with F4-TCNQ molecules preferentially accumulated near the silicon surface.  相似文献   
128.
TiO2 (B) nanosheets/GO (graphene oxide) hybrids are considered to be outstanding performance pho-tocatalysts for high efficiency of H2 evolution.However,they still suffer severe challenges during the synthetic processes,such as a large amount of the capping agents adhering on the surface and easy occurrence of aggregation.To figure out these obstacles,Ar plasma treatment as a modified method in this study not only enable the TiO2 (B) nanosheets distributed uniformly on the GO sheets but also engi-neer defects within TiO2 (B) nanosheetsto significantly improve the photocatalytic activity for the water splitting.The hydrogen evolution rate of the TiO2-x (B)/GO sheets is 1.4 times higher compared with that of original TiO2 (B)/GO sheets without Ar plasma treatment.The improved photocatalytic proper-ties were owing to the synergetic effects of oxygen vacancies and the heterojunction between GO and TiO2 (B),which can promote the visible light utilization and accelerate separation and transportation of photogenerated electron-holes.This study can provide a facile pathway to prepare the two-dimensional hybrid photocatalysts with high photocatalytic H2 activity.  相似文献   
129.
It is a big challenge to construct large-scale,high-resolution and high-performance inkjet-printed metal oxide thin film transistor (TFT) arrays with independent gates for the new printed displays.Here,a self-confined inkjet printing technology has been developed to construct large-area (64 × 64 array),high-resolution and high-performance metal oxide bilayer (In2O3/IGZO) heterojunctionTFTs with independent bottom gates on transparent glass substrates.Inkjet printing In2O3 dot arrays with the diameters from 55 to 70 μm and the thickness of ~10 nm were firstly deposited on UV/ozone treated AIOx dielectric layers,and then IGZO dots were selectively printed on the top of In2O3 dots by self-confined technology to form In2O3/IGZO heterojunction channels.When the inkjet-printed IO layers treated by UV/ozone for more than 30 min or oxygen plasma for 5 min prior to print IGZO thin films,the mobility of the resulting printed In2O3/IGZO heterojunction TFTs are correspondingly enhanced to be 18.80 and 28.44 cm2 V-1 s-1 with excellent on/off ratios (>108) and negligible hysteresis.Furthermore,the printed N-Metal-Oxide-Semiconductor (NMOS) inverter consisted of an In2O3/IGZO TFT and an IGZO TFT has been demonstrated,which show excellent performance with the voltage gain up to 112.The strategy demonstrated here can be considered as general approaches to realize a new generation of high-performance printed logic gates,circuits and display driving circuits.  相似文献   
130.
The ternary composites of g-C3N4/N-TiO2/FACs (FAC: Fly Ash Cenospheres) were synthesized by an in-situ hydrolysis method to improve the photocatalytic activity and their stability. When TiO2 was anchored on FAC, it was easily to be separated from the aqueous solution and could be repeatedly utilized. In the present experiments, the degradation rate remained for more than 68% even after the composite reused for seven times. The band gap of g-C3N4/N-TiO2/FAC was 2.75?eV, which might be owing to the synergistic effect between N-TiO2 and g-C3N4. The composite of g-C3N4/N-TiO2/FAC had an ideal activity of 72.2% under visible light illumination for 180?min. It was about 1.3 times of N-TiO2/FAC and 3.5 times of g-C3N4. The synergistic effect of SiO2, Fe2O3 and TiO2 components resulted to the improvement of photocatalytic performance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号