首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   506篇
  免费   6篇
  国内免费   20篇
电工技术   1篇
综合类   4篇
化学工业   70篇
金属工艺   5篇
能源动力   164篇
无线电   186篇
一般工业技术   97篇
冶金工业   3篇
自动化技术   2篇
  2023年   20篇
  2022年   33篇
  2021年   45篇
  2020年   33篇
  2019年   21篇
  2018年   16篇
  2017年   21篇
  2016年   11篇
  2015年   12篇
  2014年   13篇
  2013年   21篇
  2012年   23篇
  2011年   26篇
  2010年   10篇
  2009年   24篇
  2008年   21篇
  2007年   10篇
  2006年   21篇
  2005年   11篇
  2004年   9篇
  2003年   7篇
  2002年   5篇
  2001年   11篇
  2000年   12篇
  1999年   12篇
  1998年   14篇
  1997年   16篇
  1996年   10篇
  1995年   14篇
  1994年   4篇
  1993年   2篇
  1992年   4篇
  1991年   5篇
  1990年   3篇
  1989年   5篇
  1988年   3篇
  1986年   1篇
  1980年   1篇
  1977年   2篇
排序方式: 共有532条查询结果,搜索用时 390 毫秒
61.
阐述了SiGe器件的主要研究方向以及国内外对SiGe材料和器件的研究情况,并对SiGe器件与Si器件和GaAs器件的发展前景进行了比较。  相似文献   
62.
1IntroductionInthetraditionalconceptsofscanningelectronmicroscopy,itisusualythoughtthatsecondaryelectronsaresensitivetorugg...  相似文献   
63.
Ag3PO4 was deposited on TiO2 by in-situ precipitation to fabricate Ag3PO4–TiO2 heterojunction with different ratios of Ag3PO4. The electronic band structures of TiO2 and Ag3PO4 were determined by means of ultraviolet photoelectron spectroscopy and UV–visible spectrometry. The Fermi levels of TiO2 and Ag3PO4 were calculated to be −5.09 eV and −5.95 eV, respectively, and accordingly the energy band diagrams were constructed. The hydrogen production rates of bare TiO2 and Ag3PO4–TiO2 heterojunctions were measured under 300 W Xe lamp with a solar filter (AM 1.5). The heterojunction formed with 12 wt% Ag3PO4 showed the highest hydrogen evolution rate (44.5 μmol g−1h−1) which is 5.7 times higher than that of TiO2. When Au nanoparticles were deposited on this heterojunction, it resulted in 10.2 times (453.0 μmol g−1h−1) further improvement of hydrogen generation. The hydrogen evolution performance is consistent with the result of photoluminescence analysis.  相似文献   
64.
Morphology controlling and surface modification of semiconductors is the key for efficient photoelectrochemical (PEC) water splitting systems. This work provides a new strategy for achieving morphology control and heterojunction construction simultaneously by one-step hydrothermal method. The α-Fe2O3/CQDs heterojunction photoanode with convex-nanorods morphology is successfully prepared by hydrothermal method in CQDs (Carbon Quantum Dots) aqueous contained iron precursor followed by low temperature annealing treatment. Compared with bare hematite photoanode, the α-Fe2O3/CQDs photoanode has 8.5 time higher photocurrent density (at 1.23 V vs. RHE) of 0.35 mA cm?2 and a negative shift of onset potential about 300 mV. The enhanced photoelectrochemical response is attributed to the convex-nanorods which benefit higher absorbance of light and the formed α-Fe2O3/CQDs heterojunction, which can efficiently enhance the electron-hole separation and reduce the surface charge recombination. The morphology and properties of the sample were characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fouriertrans form infrared spectroscopy (FTIR), UV–vis spectra, X-ray diffractometry (XRD), X-ray photoelectron spectra (XPS), and photoelectrical measurements.  相似文献   
65.
In order to enhance the photoelectrochemical (PEC) performance of tungsten oxide (WO3), it is critical to overcome the problems of narrow visible light absorption range and low carrier separation efficiency. In this work, we firstly prepared the 2D plate-like WO3/CuWO4 uniform core-shell heterojunction through in-situ synthesis method. After modification with the amorphous Co-Pi co-catalyst, the ternary uniform core-shell structure photoanode achieved a photocurrent of 1.4 mA/cm2 at 1.23 V vs. RHE, which was about 6.67 and 1.75 times higher than that of pristine WO3 and 2D uniform core-shell heterojunction, respectively. Furthermore, the onset potential of 2D WO3/CuWO4/Co-Pi core-shell heterojunction occurred a negatively shifts of about 20 mV. Experiments illuminated that the enhanced PEC performance of WO3/CuWO4/Co-Pi photoanode was attributed to the broader light absorption, reduced carrier transfer barrier and increased carrier separation efficiency. The work provides a strategy of maximizing the advantages of core-shell heterojunction and co-catalyst to achieve effective PEC performance.  相似文献   
66.
The present study reports about exploration of a multi-component photocatalytic system comprising of WO3, TiO2 and Fe2O3 with tandem n-n heterojunctions. The ternary WO3/TiO2/Fe2O3 nanocomposite with WO3 nanoparticles over the interfaces of Fe2O3 and TiO2 is synthesized by wet precipitation followed by thermal decomposition. The WO3/TiO2/Fe2O3 nanocomposite has an enhanced photocatalytic performance towards hydrogen generation by water splitting reaction under visible light irradiation, when compared to the Fe2O3/TiO2 system. A band gap of 2.10 eV, favouring visible light absorption was achieved with the distribution of WO3 nanopartcles over the interfaces of Fe2O3 and TiO2. The as prepared WTF heterojunction exhibited a maximum hydrogen production rate of 10.2 mL h−1 for a catalyst loading of 0.025 g mL−1. The enhanced photocatalytic performance is tested in presence of various sacrificial agents and proton source. In both cases, the higher photocatalytic efficiency is attributed to the more visible light harnessing ability and pronounced charge separation owing to the tandem n-n heterojunctions generated between TiO2 with WO3 and TiO2 with Fe2O3 semiconductors and enhancing the lifetime of the photogenerated electron-hole pairs.  相似文献   
67.
设计并研制了共振隧穿二极管(RTD)与异质结双极晶体管(HBT)单片集成负阻逻辑单元。详细介绍了逻辑单元的材料结构及工艺流程的设计过程,得到了较好的负阻特性,其开启电压1V左右,峰谷比大于2∶1。同时建立了负阻逻辑单元的模型,通过Pspice模拟结果表明与实际逻辑单元特性吻合良好。  相似文献   
68.
The solid phase epitaxy (SPE) of undoped amorphous Si (a-Si) deposited on SiO2 patterned Si(001) wafers by reduced pressure chemical vapor deposition (RPCVD) using a H2-Si2H6 gas system was investigated. The SPE was performed by applying in-situ postannealing directly after deposition process. By transmission electron microscopy (TEM) and scanning electron microscopy, we studied the lateral SPE (L-SPE) length on sidewall and mask for various postannealing times, temperatures and a-Si thicknesses. We observed an increase in L-SPE growth for longer postannealing times, temperatures and larger Si thicknesses on mask. TEM defect studies revealed that by SPE crystallized epi-Si exhibits a higher defect density on the mask than at the inside of the mask window. By introducing SiO2-cap on the sample with 180 nm Si thickness following postannealing at 570 °C for 5 h, the crystallization of up to 450 nm epi-Si from a-Si is achieved. We demonstrated the possibility to use this technique for SiGe:C heterojunction bipolar transistor (HBT) base layer stack to crystallize Si-buffer layer to widen the monocrystalline region around the bipolar window and to improve base link resistivity of the HBT.  相似文献   
69.
70.
A 2D g-C3N4(pPCN)/rGO heterojunction for photocatalytic hydrogen production is fabricated by a facile dissolution strategy facilitated by H2SO4. The bulk g-C3N4 (CN) can be directly exfoliated into ultrathin protonated g-C3N4 (PCN) nanosheets under the assistance of H2SO4, and PCN can be further modified by rGO in a dissolved state under the electrostatic self-assembly process. The nanocomposite exhibits a large surface area (146.47 m2/g) and intimate contact interfaces between pPCN and rGO due to the specific synthesis method. Based on the DRS, PL and photoelectrochemical analyses, the introduction of rGO can greatly improve the light absorption and photogenerated charge carrier separation and transfer of g-C3N4. The optimal pPCN/2 wt% rGO nanocomposite shows an efficient photocatalytic H2 evolution rate of 715 μmol g?1 h?1 under visible light irradiation, which is 2.6 and 13 times higher than those obtained on pPCN and CN. In addition, a photocatalytic mechanism over a 2D pPCN/rGO heterojunction is proposed. This work offers a new effective strategy for fascinating gC3N4based nanocomposites with promising hydrogen generation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号