首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   220篇
  免费   2篇
  国内免费   10篇
电工技术   1篇
综合类   1篇
化学工业   34篇
金属工艺   5篇
能源动力   98篇
水利工程   1篇
无线电   45篇
一般工业技术   41篇
冶金工业   2篇
自动化技术   4篇
  2023年   22篇
  2022年   33篇
  2021年   33篇
  2020年   18篇
  2019年   12篇
  2018年   10篇
  2017年   3篇
  2016年   4篇
  2015年   1篇
  2014年   9篇
  2013年   4篇
  2012年   2篇
  2011年   7篇
  2010年   3篇
  2009年   8篇
  2008年   7篇
  2007年   5篇
  2006年   6篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   9篇
  1999年   2篇
  1998年   4篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1993年   5篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1983年   1篇
  1977年   1篇
排序方式: 共有232条查询结果,搜索用时 15 毫秒
61.
Accelerating the charge separation and transfer as well as increasing the visible light absorption is of great importance for photocatalysts to realize efficient photocatalytic hydrogen evolution via water splitting. Herein, for the first time, we fabricated in-plane graphited nanocarbon-conjugated polymeric carbon nitride (GNC-C3N4) nanosheet heterostructure photocatalyst from melamine and hexaketocyclohexane octahydrate mixture via an amino-carbonyl reaction. The incorporation of GNC into conjugate network of C3N4 can not only dramatically enhance the light harvesting but also significantly promote the charge separation and transfer by the built-in electric field and intimate interface in the coplanar GNC-C3N4 heterostructure. Accordingly, the optimal GNC-C3N4 photocatalyst demonstrates a more than 15-fold enhancement for photocatalytic hydrogen evolution from water under visible light irradiation, compared to C3N4.  相似文献   
62.
The design of novel heterostructure with multifunctional characteristics is of great technical significance for the development of new energy storage devices. However, the lower conductivity of metal oxides and the accumulation caused by irreversible phase transition after multiple cycles are the main reasons for the low specific capacitance and cycle life. Herein, we synthesized bimetallic oxide MgCo2O4 nanoneedles with a spinel structure, and firmly anchored Fe3O4 nanocubes on MgCo2O4 nanoneedles by ion-exchange strategy. Thanks to the constructed heterostructure of nanoneedles/nanocubes, the introduction of Fe3O4 effectively improves the electron transport path in MgCo2O4 during repeated charging and discharging, and increases the effective activation sites involved in electron transfer. As a result, a higher specific capacitance of 1648 F g?1 at 1 A g?1 and an ultra-long cycle life of 78.6% capacitance retention after 6000 continuous charge/discharge cycles are obtained. A flexible all-solid-state asymmetric supercapcitor assembled with MgCo2O4-Fe3O4 as positive electrode and AC as negative electrode can deliver an ultra-high energy density of 78 Wh kg?1 and maximum power density of 1.2 kW kg?1, as well as extraordinary capacitive retention of 75.2% after 10,000 cycles. These excellent properties reveal the potential and application value of MgCo2O4-Fe3O4 in the development of high-performance supercapacitors.  相似文献   
63.
Construction of heterostructured photocatalysts is a feasible method for improving hydrogen production from water splitting because of its good charge transport efficiency. Herein, we coupled the Ti-MOFs (TiATA) with metal-free graphitic carbon nitride (g-C3N4) to synthesize composites, g-C3N4@TiATA, in which a heterostructure was formed between g-C3N4 and TiATA. The establishment of heterojunctions not only broadens the light absorption range of g-C3N4@TiATA (490 nm) by contrast with g-C3N4 (456 nm), but also greatly accelerates charge migration. Photocatalytic studies present that the construction of heterostructure steering the charges flow from g-C3N4 to TiATA and then delivery to the cocatalyst of Pt nanoparticles, exhibiting an impressively photocatalytic hydrogen production rate (265.8 μmol·h−1) in assistance of 300 W Xenon lamp, which is about 3.4 times as much as g-C3N4/Pt.  相似文献   
64.
A high-efficiency and easy-available approach was developed to obtain a ternary heterojunction composites with advanced hydrogen evolution reaction (HER) performance under visible light by water split. PdAg bimetallic nanoparticles make a close contact interface between g-C3N4(CN) and Zn0.5Cd0.5S(ZCS). Under visible light irradiation, CN and ZCS are both excited to generate electron-hole pairs, PdAg bimetallic nanoparticles act as a bridge between CN and ZCS. Not only can the photogenerated electrons from CN be captured, but they can also be quickly transferred to the surface of ZCS and participate in the photocatalytic reaction to release H2, and the recombination of charge carriers between the contact interface of ZCS and CN can be significantly inhibited. In addition, the thin CN layer reduces the photocorrosion of the ZCS and enhances the specific surface area of the composite material. After testing, the composite material with 30 wt% ZCS and 4 wt% PdAg demonstrates hydrogen evolution performance, up to 6250.7 μmol g?1h?1, which is 753 times the hydrogen evolution rate of single-component CN and 12.6 times of ZCS/CN. Compared with single-component and two-component photocatalysts, the ternary ZCS/PdAg/CN photocatalyst achieves significantly enhanced photocatalytic activity.  相似文献   
65.
A wide diversity of phosphides of platinum-group metal including Rh, Ru and Ir exhibit intriguing electrocatalytic activity toward hydrogen evolution reaction (HER). The phosphidation degree, namely the P dosage in these phosphides shows pronounced influence on the catalytic performance but is hard to control. In this work we developed a reliable strategy to synthesize Rh2P-based nanoparticles with controlled phosphidation degree, and investigated the influence of phosphidation degree on HER. It is found that the heterostructured Rh2P/Rh nanoparticle, i.e., the P-deficient composite with mixed metallic and phosphide phases, outperforms either the metallic Rh or pure Rh2P nanoparticles. As-synthesized Rh2P/Rh nanoparticles supported on P/N co-doped graphene (denoted as Rh2P/Rh-G) display remarkable HER activity with tiny overpotential of 17 and 19 mV at 10 mA cm?2 current density in alkaline and acid, efficiently surpassing its Rh-based rivals and benchmark Pt/C catalyst. Meanwhile it illustrates a large mass-specific activity (3.23 and 6.26 A mg?1 @50 mV overpotential in alkaline and acid, respectively) due to its high activity and low metal loading. Density functional theory (DFT) calculation indicates that the Rh2P/Rh heterostructured interface possesses the optimal close-to-zero value of hydrogen adsorption energy and water dissociation process is accelerated, and thus boosts HER activity.  相似文献   
66.
A potential non-noble metal oxide catalyst with its low-cost and efficient catalytic ability attract increasing attention. In this paper, a highly efficient bifunctional electrocatalyst Co||MnCo2O4.5/NC with heterostructure and oxygen vacancies is prepared utilizing solid reaction in-situ. The optimal catalyst is obtained at 650 °C with the mass ratio (1:8) of MnCo2O4.5 and Dicyandiamide (DCD). It shows excellent electrocatalytic activity for oxygen reduction reaction (ORR) with high half-wave potential (0.81 V) and limit current density (6.22 mA cm?2), which is better than that of the commercial 20% Pt/C(0.81 V, 5.52 mA cm?2). At the same time, it also exhibits superior electrocatalytic activity for oxygen evolution reaction (OER) with low overpotential (330 mV) and a faster dynamics process. The superior electrocatalytic properties may be resulted from the presence of heterostructure and increasing ratio of oxygen vacancies, which helps to the rapid transfer of electrons and creates more active sites. Moreover, the self-generated N-doped carbon provides high conductivity of the as-prepared Co||MnCo2O4.5/NC composite. It can be seen that the application of interface engineering technologies is useful for improving the performance of the catalyst, providing an effective and facile synthesis strategy for non-noble metal catalyst.  相似文献   
67.
Developing the novel catalysts with an excellent performance of hydrogen generation is essential to facilitate the application of hydrogen evolution reaction (HER). Herein, a heterostructured cobalt phosphide/nickel phosphide/carbon cloth (CoP/Ni2P/CC) composite was fabricated via an interfacial engineering strategy to achieve the modification of CoP nanoleaf on Ni2P nanosheet skeleton supported by carbon cloth. By virtue of the unique heterostructure, abundant exposing active sites and the synergistic coupling effect of CoP and Ni2P nanoparticles, the elaborated CoP/Ni2P/CC composite exhibits a robust catalytic property. Among fabricated composites, the optimal CoP/Ni2P/CC-4 catalyst behaves an excellent HER performance at a wide pH range (overpotentials of 67, 71 and 95 mV to afford 10 mA cm?2 in 0.5 M H2SO4, 1 M KOH and 1 M PBS, respectively). The HER current density of this composite shows a negligible degradation after continuous test for 24 h. Charmingly, the HER process of this catalyst was innovatively applied to reduce graphene oxide, and thus exploiting the fabrication route of reduced graphene oxide (rGO). We are sure that this work will provide a firm guideline for the exploitation of pH-universal HER catalysts and the exploration of HER application.  相似文献   
68.
The construction of high-efficiency bifunctional electrocatalysts is still a main challenge for hydrogen production from water splitting, in which comprehensive structure regulation plays a key role for synergistically boosting the intrinsic activity and charge collection. Here, we used a two-step hydrothermal method for construction of an interjaculated CoSe/Ni3Se4 heterostructure from NiCo LDH nanosheets grown on stainless steel (SS) meshes as bifunctional electrocatalysts for overall water splitting. The SS meshes containing Fe and Ni act as an excellent 3D scaffold for catalyst growth and charge collection. The SS@CoSe/Ni3Se4 composite exhibits outstanding electrocatalytic performances with low overpotentials of 97 mV for hydrogen evolution and 230 mV for oxygen evolution to reach a current density of 10 mA cm−2, respectively. Moreover, by using SS@CoSe/Ni3Se4 as both the cathode and anode, the assembled electrolyze only required 1.55 V to reach 10 mA cm−2 for overall water splitting. The outstanding performance of SS@CoSe/Ni3Se4 benefits from the synergy between excellent charge collection capability of SS meshes and the abundant active sites at the CoSe/Ni3Se4 heterointerface formed with the in-situ conversion of NiCo LDH nanosheets. Electrochemical active surface area and impedance spectrum indicate that the CoSe/Ni3Se4 loaded on SS has the most abundant electrochemically active sites and the smallest electrochemical resistance, thereby exposing more active sites and enhancing the charge transfer to promote the catalytic activity. By integrating the delicate nanoscale heterostructure engineering with the microscale SS mesh scaffold, our work provides a new perspective for the preparation of high-performance and cheap electrocatalysts that are easy to be integrated with industrial applications.  相似文献   
69.
Water electrolysis for producing hydrogen is considered to be the most feasible means to develop new green energy. Compared with above, urea electrolysis can improve energy conversion efficiency by introducing urea, and can also be used for purification of wastewater rich in urea. In this paper, a bifunctional electrocatalyst with heterostructure, namely Fe7Se8@Fe2O3 nanosheets supported on nickel foam, were synthesized for the first time through typical hydrothermal and partial oxidation processes. Iron cation promotes electron transfer and adjusts electron structure under the synergistic action of selenium and oxygen anion, thus achieving excellent catalytic activity of urea electrolysis. In an alkaline solution of 1 M KOH with 0.5 M urea, the Fe7Se8@Fe2O3/NF catalyst can drive the current density of 10 mA cm?2 with requiring only potential of 1.313 V and overpotential of 141 mV for urea oxidation reaction (UOR) and hydrogen evolution reaction (HER), respectively. What is noteworthy is that Fe7Se8@Fe2O3/NF heterostructure is used as bifunctional electrocatalyst to form urea electrolyzer device, which only needs potential of 1.55 V to drive current density of 10 mA cm?2, which is one of the best catalytic activities reported so far, and the electrode couple showed remarkable stability for 15 h. Density functional theory shows that the Fe7Se8@Fe2O3/NF material exhibits the minimum Gibbs free energy for the adsorption of hydrogen. This work provides a new method for exploring novel and environmentally friendly bifunctional electrocatalysts for urea electrolysis.  相似文献   
70.
Recently, photocatalysis has received huge attention in order to overcome energy crisis worldwide. Many semiconductors, potential schemes and hierarchies have come to light during past few decades to fabricate efficient catalysts however, among all these methods heterostructures have taken the world by surprise. With the advancement in post-graphene 2D materials, van der Waals heterostructures have come to light exploring enhancement in photocatalysis. During a very short period a number of ZnO-based van der Waal heterostructures have taken the limelight in the field of photocatalysis. First principles calculations and DFT approach towards the heterostructures of GeC, GaN, WSe2, WS2 and other layered 2D materials unleased a series of properties and facts for the provision of enhanced catalysis. Reduction in bandgap of ZnO has also been observed which widens the pathways towards visible light irradiation. However, energy applications of zinc oxide are also fascinating feature as it can serve as a photoanode to replace TiO2. Whereas the famous hydrogen production, batteries and solar cells have also been fabricated by the use of this semiconductor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号