首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   138篇
  免费   0篇
  国内免费   5篇
电工技术   1篇
化学工业   14篇
金属工艺   1篇
机械仪表   2篇
能源动力   21篇
无线电   34篇
一般工业技术   70篇
  2023年   3篇
  2022年   4篇
  2021年   8篇
  2020年   8篇
  2019年   4篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2014年   3篇
  2013年   5篇
  2012年   5篇
  2011年   8篇
  2010年   7篇
  2009年   7篇
  2008年   11篇
  2007年   16篇
  2006年   9篇
  2005年   3篇
  2004年   4篇
  2003年   5篇
  2002年   3篇
  2001年   3篇
  2000年   3篇
  1999年   1篇
  1998年   2篇
  1997年   4篇
  1996年   2篇
  1995年   3篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1978年   1篇
排序方式: 共有143条查询结果,搜索用时 15 毫秒
111.
It is great important to develop and explore a non-precious bifunctional electrocatalyst with high efficiency and good stability for Hydrogen Evolution Reaction (HER) and Oxygen Evolution Reaction (OER) in alkaline electrolyte. Herein, a three-dimensional (3D) needle-like MoS2/NiS heterostructure supported on Nickel Foam (NF) (MoS2/NiS/NF) is synthesized by a simple hydrothermal method for the first time, which can act as a good bifunctional electrocatalyst for overall water splitting. As expected, the optimal MoS2/NiS/NF exhibits excellent catalytic performance with a low overpotential of 87 and 216 mV at 10 mA cm−2 for HER and OER in 1 M KOH electrolyte, respectively, accompanied by good cycle stability. Furthermore, the MoS2/NiS/NF as bifunctional electrocatalyst in an electrolyzer shows high efficiency with a cell voltage of 1.5 V at 10 mA cm−2, as well as superior durability. The present work may open a new direction to design and develop a non-precious bifunctional electrocatalyst with excellent catalytic activity for water splitting in the future.  相似文献   
112.
A continuous and highly biaxially textured CdTe film was grown by metal organic chemical vapor deposition on an amorphous substrate using biaxial CaF2 nanorods as a buffer layer. The interface between the CdTe film and CaF2 nanorods and the morphology of the CdTe film were studied by transmission electron microscopy (TEM) and scanning electron microscopy. Both the TEM and X-ray pole figure analysis clearly reveal that the crystalline orientation of the continuous CdTe film followed the {111}<121> biaxial texture of the CaF2 nanorods. A high density of twin faults was observed in the CdTe film. Furthermore, the near surface texture of the CdTe thin film was investigated by reflection high-energy electron diffraction (RHEED) and RHEED surface pole figure analysis. Twinning was also observed from the RHEED surface pole figure analysis.  相似文献   
113.
Self-diffusion of silicon in magnetron sputtered silicon carbide films deposited on different substrates (crystalline silicon and glassy carbon) is investigated. Since crystallization of amorphous silicon carbide films strongly depends on the substrate, the diffusivity of silicon is expected to depend on the substrate as well. Isotope hetero-structures and secondary ion mass spectrometry were used for analysis. For amorphous samples an upper limit of the diffusivity of 1 × 10− 21 m2/s is derived at 1100 C°. For crystallized films diffusivities between 1350 °C and 1600 °C are found to be not significantly different for the two types of substrates. For samples deposited on glassy carbon substrates an activation enthalpy ΔHD = (8.7 ± 0.9) eV was found for the self-diffusion of Si. The consequences of our findings for crystallization are discussed.  相似文献   
114.
通过低温和高磁场下的磁输运测量,首次在Al0.22Ga0.78N/GaN异质结中观察到了舒勃尼科夫-德哈斯振荡的双周期特性,发现在Al0.22Ga0.78N/GaN异质结的三角势阱中产生了二维电子气(2DEG)的第二子带占据,发生第二子带占据的阈值2DEG浓度估算为7.2*10^12cm^-2,在阈值2DEG浓度下第一子带和第二子带能级的距离计算为75meV。  相似文献   
115.
116.
《Ceramics International》2020,46(12):19655-19663
Unique optical, electrical and chemical properties make carbon nanotubes (CNTs) an excellent candidate for potential applications in the next-generation optoelectronics. Especially, the optoelectronic properties of CNTs can be enhanced dramatically by constructing heterostructures with other materials, in which the charge separation efficiency is enhanced and the recombination probability of excitons is suppressed significantly. Therefore, the CNT-based heterostructures have been widely used as active materials in high-performance photoelectronic devices. Herein, the recent progress of the CNT-based heterostructure photodetectors is reviewed. Firstly, the working mechanisms and typical figures-of-merits are introduced. Secondly, different type CNT-based heterostructures and related photodetectors are highlighted, such as van der Waals heterostructures, all-carbon heterostructures, and bulk heterostructures. Finally, we give the current challenges and future prospects for the development of this emerging field.  相似文献   
117.
Exploring inexpensive and earth-abundant electrocatalysts for hydrogen evolution reactions is crucial in electrochemical sustainable chemistry field. In this work, a high-efficiency and inexpensive non-noble metal catalysts as alternatives to hydrogen evolution reaction (HER) was designed by one-step hydrothermal and two-step electrodeposition method. The as-prepared catalyst is composed of the synergistic MoS2–Co3S4 layer decorated by ZnCo layered double hydroxides (ZnCo-LDH), which forms a multi-layer heterostructure (ZnCo/MoS2–Co3S4/NF). The synthesized ZnCo/MoS2–Co3S4/NF exhibits a small overpotential of 31 mV and a low Tafel plot of 53.13 mV dec?1 at a current density of 10 mA cm?2, which is close to the HER performance of the overpotential (26 mV) of Pt/C/NF. The synthesized ZnCo/MoS2–Co3S4/NF also has good stability in alkaline solution. The excellent electrochemical performance of ZnCo/MoS2–Co3S4/NF electrode originates from its abundant active sites and good electronic conductivity brought by the multilayer heterostructure. This work provides a simple and feasible way to design alkaline HER electrocatalysts by growing heterostructures on macroscopic substrates.  相似文献   
118.
《Ceramics International》2020,46(15):24060-24070
Taking advantage of the oil-water interface, we introduced Ag@AgCl quantum dots (QDs) onto 2D Sn3O4 nanosheets to fabricate a composite photocatalyst with a 3D flower-like structure (denoted as Ag@AgCl/Sn3O4). Using the degradation of tetracycline hydrochloride (TC-HCl) and methylene blue (MB) as the examples, the as-prepared Ag@AgCl/Sn3O4 composite with Ag@AgCl weight loading of 1% indicated 9.6 and 7.88 times higher photocatalytic activity than the Sn3O4 nanosheets. Within both degradation reactions, hydroxyl radicals (•OH) and superoxide radicals (•O2−) were identified as the critical oxidation intermediates based on radical trapping and electron spin resonance (ESR) experiments. The unique morphology and photoelectrochemical properties of the as-prepared composites suggested the introduced Ag@AgCl QDs cooperated with the Sn3O4 semiconductor to enhance the utilization of solar energy. Overall, the established heterojunction helped to reduce the transfer barrier of the photoinduced charge carriers, wherein the surface plasmonic resonance (SPR) of Ag nanoparticles was believed to take the main responsibility. The present work combines the Ag@AgCl-QDs and flower-like 3D Sn3O4 microspheres for the first time to achieve an impressive degrading rate of TC-HCl and MB at the Ag@AgCl weight loading as low as 1%.  相似文献   
119.
The erosion issue of ZnO nanorod arrays (NRAs) film is the major obstacle in surface sensitization of ZnO NRAs grown on Zn foil substrate for photoelectrochemical (PEC) applications. In this paper, PEC performance of ZnO NRAs grown on Zn foil substrate was greatly enhanced by coating ZnSe and CdSe on the surface of ZnO NRAs. Dense ZnO NRAs were in-situ grown on seed-free Zn foil substrate in a NH3·H2O and NaOH hydrothermal system. ZnSe/CdSe co-sensitized ZnO heterostructures were then successfully synthesized using ZnO NRAs as precursors by two successive in-situ ion exchanges without damaging Zn foil and ZnO NRAs film. To obtain optimal photoconversion efficiency, anion exchange time and temperature were optimized. ZnO/ZnSe/CdSe heterostructures with optimized structure were shown as a layer of compact ZnSe/CdSe nanofilm conformally and uniformly coated on ZnO NRAs, which leads to efficient separation of photogenerated carriers, significant enhancement in visible-light absorption, and excellent PEC performance with photocurrent density of 3.008 mA/cm2 (−0.2 V vs. Ag/AgCl) and photoconversion efficiency of 1.99% (0.418 V vs. RHE in polysulfide electrolyte solution), 27.55 and 40.61 times higher than those of ZnO NRAs, respectively.  相似文献   
120.
B-implantationandAnnealingforSiGeEpilayers①②JIANGRL,LIUWP,JIANGN,ZHUSM,HULH,ZHENGYD(Dept.ofPhysics,NanjingUniversity,Nanjing2...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号