首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   124741篇
  免费   11156篇
  国内免费   7323篇
电工技术   14984篇
技术理论   18篇
综合类   7617篇
化学工业   12994篇
金属工艺   3467篇
机械仪表   4404篇
建筑科学   11197篇
矿业工程   2184篇
能源动力   25972篇
轻工业   2592篇
水利工程   1651篇
石油天然气   2483篇
武器工业   797篇
无线电   7694篇
一般工业技术   10900篇
冶金工业   4487篇
原子能技术   1575篇
自动化技术   28204篇
  2024年   509篇
  2023年   2918篇
  2022年   4261篇
  2021年   4774篇
  2020年   5093篇
  2019年   4907篇
  2018年   4114篇
  2017年   4742篇
  2016年   4567篇
  2015年   4366篇
  2014年   8244篇
  2013年   9092篇
  2012年   7956篇
  2011年   9316篇
  2010年   7138篇
  2009年   7631篇
  2008年   7001篇
  2007年   7280篇
  2006年   5756篇
  2005年   4653篇
  2004年   3870篇
  2003年   3472篇
  2002年   3097篇
  2001年   2548篇
  2000年   2346篇
  1999年   1983篇
  1998年   1689篇
  1997年   1424篇
  1996年   1281篇
  1995年   1039篇
  1994年   925篇
  1993年   816篇
  1992年   627篇
  1991年   579篇
  1990年   470篇
  1989年   368篇
  1988年   310篇
  1987年   257篇
  1986年   208篇
  1985年   272篇
  1984年   267篇
  1983年   217篇
  1982年   213篇
  1981年   127篇
  1980年   115篇
  1979年   110篇
  1978年   76篇
  1977年   77篇
  1976年   22篇
  1975年   16篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
51.
The triboelectric effect has recently demonstrated its great potential in environmental remediation and even new energy applications for triggering a number of catalytic reactions by utilizing trivial mechanical energy. In this study, Ba4Nd2Fe2Nb8O30 (BNFN) submicron powders were used to degrade organic dyes via the tribocatalytic effect. Under the frictional excitation of three PTFE stirring rods in a 5 mg/L RhB dye solution, BNFN demonstrates a high tribocatalytic degradation efficiency of 97% in 2 h. Hydroxyl radicals (?OH) and superoxide radicals (?O2-) were also detected during the catalysis process, which proves that triboelectric energy stimulates BNFN to generate electron-hole pairs. The tribocatalysis of tungsten bronze BNFN submicron powders provides a novel and efficient method for the degradation of wastewater dye by utilizing trivial mechanical energy.  相似文献   
52.
分析了静电产生的原因,阐述了粉体含能材料生产中的静电起电现象、静电的危害、静电安全性评估标准以及建立在此标准基础上的静电放电危险的评价办法,提出了粉体含能材料在生产、运输中所需要采取的静电防护措施。  相似文献   
53.
A class of ruthenium-nickel alloy catalysts featured with nanoporous nanowires (NPNWs) were synthesized by a strategy combining rapid solidification with two-step dealloying. RuNi NPNWs exhibit excellent electrocatalytic activity and stability for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in which the RuNi-2500 NPNWs catalyst shows an OER overpotential of 327 mV to deliver a current density of 10 mA cm?2 and the RuNi-0 NPNWs catalyst requires the overpotential of 69 mV at 10 mA cm?2 showing the best HER activity in alkaline media. Moreover, the RuNi-1500 NPNWs catalyst was used as the bifunctional electrocatalyst in a two-electrode alkaline electrolyzer for water splitting, which exhibits a low cell voltage of 1.553 V and a long-term stability of 24 h at 10 mA cm?2, demonstrating that the RuNi NPNWs catalysts can be considered as promising bifunctional alkaline electrocatalysts.  相似文献   
54.
Two electron oxygen reduction reaction to produce hydrogen peroxide (H2O2) is a promising alternative technique to the multistep and high energy consumption anthraquinone process. Herein, Ni–Fe layered double hydroxide (NiFe-LDH) has been firstly demonstrated as an efficient bifunctional catalyst to prepare H2O2 by electrochemical oxygen reduction (2e? ORR) and oxygen evolution reaction (OER). Significantly, the NiFe-LDH catalyst possesses a high faraday efficiency of 88.75% for H2O2 preparation in alkaline media. Moreover, the NiFe-LDH catalyst exhibits excellent OER electrocatalytic property with small overpotential of 210 mV at 10 mA cm?2 and high stability in 1 M KOH solution. On this basis, a new reactor has been designed to electrolyze oxygen and generate hydrogen peroxide. Under the ultra-low cell voltage of 1 V, the H2O2 yield reaches to 47.62 mmol gcat?1 h?1. In order to evaluate the application potential of the bifunctional NiFe-LDH catalyst for H2O2 preparation, a 1.5 V dry battery has been used as the power supply, and the output of H2O2 reaches to 83.90 mmol gcat?1 h?1. The excellent electrocatalytic properties of 2e? ORR and OER make NiFe-LDH a promising bifunctional electrocatalyst for future commercialization. Moreover, the well-designed 2e? ORR-OER reactor provides a new strategy for portable production of H2O2.  相似文献   
55.
The sustainable reduction of greenhouse gas emissions from road transport requires solutions to achieve net-zero carbon dioxide emissions. Therefore, in addition to vehicles with electrified powertrains, such as those implemented in battery electric of fuel cell vehicles, internal combustion engines fueled with e-fuels or biofuels are also under discussion. An e-fuel that has come into focus recently, is hydrogen due to its potential to achieve zero tank-to-wheel and well-to-wheel carbon dioxide emissions when the electrolysis is powered by electricity from renewable sources. Due to the high laminar burning velocity, hydrogen has the potential for engine operation with high cylinder charge dilution by e.g. external exhaust gas recirculation or enleanment, resulting in increased efficiency. On the other hand, the high burning velocity and high adiabatic flame temperatures pose a challenge for engine cooling due to increased heat losses compared to conventional fuels. To further evaluate the use of hydrogen for small passenger car engines, a series production 1 L 3 cylinder gasoline engine provided by Ford Werke GmbH was modified for hydrogen direct injection. The engine was equipped with a high pressure external exhaust gas recirculation system to investigate charge dilution at stoichiometric operation. Due to limitations of the turbocharging system, very lean operation, which can achieve nitrogen oxides raw emissions below 10 ppm, was limited to part load operation below BMEP = 8 bar. Thus, a reduction of the nitrogen oxides emission level at high loads compared to stoichiometric operation was not possible. At stoichiometric operation with external exhaust gas recirculation engine efficiency can be increased significantly. The comparison of stoichiometric hydrogen and gasoline operation shows a reduced indicated efficiency with hydrogen with significant faster combustion of hydrogen at comparable centers of combustion. However, higher boost pressures would allow to achieve even higher indicated efficiencies by charge dilution compared to gasoline engine operation.  相似文献   
56.
Developing high-performance visible-to-UV photon upconversion systems based on triplet–triplet annihilation photon upconversion (TTA-UC) is highly desired, as it provides a potential approach for UV light-induced photosynthesis and photocatalysis. However, the quantum yield and spectral range of visible-to-UV TTA-UC based on nanocrystals (NCs) are still far from satisfactory. Here, three different sized CdS NCs are systematically investigated with triplet energy transfer to four mediators and four annihilators, thus substantially expanding the available materials for visible-to-UV TTA-UC. By improving the quality of CdS NCs, introducing the mediator via a direct mixing fashion, and matching the energy levels, a high TTA-UC quantum yield of 10.4% (out of a 50% maximum) is achieved in one case, which represents a record performance in TTA-UC based on NCs without doping. In another case, TTA-UC photons approaching 4 eV are observed, which is on par with the highest energies observed in optimized organic systems. Importantly, the in-depth investigation reveals that the direct mixing approach to introduce the mediator is a key factor that leads to close to unity efficiencies of triplet energy transfer, which ultimately governs the performance of NC-based TTA-UC systems. These findings provide guidelines for the design of high-performance TTA-UC systems toward solar energy harvesting.  相似文献   
57.
In this study, lignin was gasified in supercritical water with catalysis of CuO–ZnO synthesized by deposition precipitation, co-precipitation and sol-gel methods. Sol-gel synthesized CuO–ZnO showed the highest catalytic performance, and the gasification efficiency was increased by 37.92% with it. The XRD, SEM-EDS and N2 adsorption/desorption analysis showed that the priority of the sol-gel catalyst was the smallest crystallite size, largest specific surface area and high dispersion. For sol-gel synthesized CuO–ZnO, the increase of CuO/ZnO ratio improved the gasification efficiency but reduced H2 selectivity. And the catalytic activity was reduced with the calcination temperature above 600 °C due to enlarged crystallites and reduced pores. During sol-gel preparation, both the addition of ethanol and PEG in the solvent reduced the agglomeration and improved the catalytic activity. With CuO–ZnO prepared with 1 g PEG + water as the solvent, the highest H2 yield of 6.86 mol/kg was obtained, which was over 1.5 times of that without catalyst.  相似文献   
58.
A climate neutral energy system in Germany will most likely require green hydrogen. Two important factors, that determine whether the hydrogen will be imported or produced locally from renewable energy are still uncertain though - the import price for green hydrogen and the upper limit for photovoltaic installations. To investigate the impact of these two factors, the authors calculate cost optimized climate neutral energy systems while varying the import price from 1.25 €/kg to 5 €/kg with unlimited import volume and the photovoltaic limit from 300 GW to unlimited. In all scenarios, hydrogen plays a significant role. At a medium import price of 3.75 €/kg and photovoltaic limits of 300–900 GW the hydrogen supply is around 1200 to 1300 TWh with import shares varying from 60 to 85%. In most scenarios the electrolysis profile is highly correlated with the photovoltaic power, which leads to full load hours of 1870 h–2770 h.  相似文献   
59.
Smartphones are a promising tool as student response systems (SRS) for interactive teaching due to their widespread diffusion. Here, the main purpose is to assess the efficacy of smartphone-based SRS in large classroom settings of undergraduate Thermodynamics, as representative of engineering courses requiring high-level cognitive skills for problem solving. Four sets of multiple-choice questions were presented during the course. Overall, the results refer to 1055 students between control and SRS classes, each corresponding to a3 years period.One of the main results of this work is the strong linear correlation between the average questionnaire score and the final exam grade (R2 = 0.91). A similar correlation, although with a lower value of R2, is already found in the first questionnaire, thus showing the SRS high predictive power of class performance. The results of this study provide guidance for a quantitative use of smartphone-based SRS in teaching basic disciplines. The SRS monitoring capability allows early detection of struggling students, thus paving the way to personalized tutoring and improved student engagement in active learning practices. This approach is especially important in emergency situations, such as the SARS-Cov-2 pandemic, when distance learning is widely adopted, and remote interactive tools are highly needed.  相似文献   
60.
In this work, hydrate based separation technique was combined with membrane separation and amine-absorption separation technologies to design hybrid processes for separation of CO2/H2 mixture. Hybrid processes are designed in the presence of different types of hydrate promoters. The conceptual processes have been developed using Aspen HYSYS. Proposed processes were simulated at different flow rates for the feed stream. A comprehensive cost model was developed for economic analysis of novel processes proposed in this study. Based on the results from process simulation and equipment sizing, the amount of total energy consumption, fixed cost, variable cost, and total cost were calculated per unit weight of captured CO2 for various flow rates of feed stream and in the presence of different hydrate promoters. Results showed that combination of hydrate formation separation technique with membrane separation technology results in a CO2 capture process with lowest energy consumption and total cost per unit weight of captured CO2. As split fraction and heat of hydrate formation increases, the share of hydrate formation section in total energy consumption increases. When TBAB is applied as hydrate promoter, due to its higher hydrate separation efficiency, more amount of CO2 is captured in hydrate formation section and consequently the total cost for process decreases considerably. Hybrid hydrate-membrane process in the presence of TBAB as hydrate promoter with 29.47 US$/ton CO2 total cost is the best scheme for hybrid hydrate CO2 capture process. Total cost for this process is lower than total cost for single MDEA-based absorption process as the mature technology for CO2 capture.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号