首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4059篇
  免费   511篇
  国内免费   248篇
电工技术   437篇
综合类   163篇
化学工业   877篇
金属工艺   774篇
机械仪表   44篇
建筑科学   54篇
矿业工程   192篇
能源动力   436篇
轻工业   17篇
水利工程   7篇
石油天然气   90篇
武器工业   11篇
无线电   277篇
一般工业技术   650篇
冶金工业   723篇
原子能技术   40篇
自动化技术   26篇
  2024年   12篇
  2023年   63篇
  2022年   136篇
  2021年   175篇
  2020年   220篇
  2019年   163篇
  2018年   132篇
  2017年   161篇
  2016年   165篇
  2015年   140篇
  2014年   226篇
  2013年   193篇
  2012年   279篇
  2011年   346篇
  2010年   227篇
  2009年   214篇
  2008年   196篇
  2007年   314篇
  2006年   259篇
  2005年   222篇
  2004年   200篇
  2003年   158篇
  2002年   133篇
  2001年   105篇
  2000年   104篇
  1999年   77篇
  1998年   40篇
  1997年   38篇
  1996年   34篇
  1995年   23篇
  1994年   19篇
  1993年   8篇
  1992年   10篇
  1991年   6篇
  1990年   8篇
  1989年   1篇
  1987年   2篇
  1986年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1951年   4篇
排序方式: 共有4818条查询结果,搜索用时 843 毫秒
91.
Due to the high theoretical capacity as high as 1494 mAh g?1, SnO2 is considered as a potential anode material for high‐capacity lithium–ion batteries (LIBs). Therefore, the simple but effective method focused on fabrication of SnO2 is imperative. To meet this, a facile and efficient strategy to fabricate core–shell structured C/SnO2 hollow spheres by a solvothermal method is reported. Herein, the solid and hollow structure as well as the carbon content can be controlled. Very importantly, high‐yield C/SnO2 spheres can be produced by this method, which suggest potential business applications in LIBs field. Owing to the dual buffer effect of the carbon layer and hollow structures, the core–shell structured C/SnO2 hollow spheres deliver a high reversible discharge capacity of 1007 mAh g?1 at a current density of 100 mA g?1 after 300 cycles and a superior discharge capacity of 915 mAh g?1 at 500 mA g?1 after 500 cycles. Even at a high current density of 1 and 2 A g?1, the core–shell structured C/SnO2 hollow spheres electrode still exhibits excellent discharge capacity in the long life cycles. Consideration of the superior performance and high yield, the core–shell structured C/SnO2 hollow spheres are of great interest for the next‐generation LIBs.  相似文献   
92.
It is of great importance to exploit electrode materials for sodium‐ion batteries (SIBs) with low cost, long life, and high‐rate capability. However, achieving quick charge and high power density is still a major challenge for most SIBs electrodes because of the sluggish sodiation kinetics. Herein, uniform and mesoporous NiS2 nanospheres are synthesized via a facile one‐step polyvinylpyrrolidone assisted method. By controlling the voltage window, the mesoporous NiS2 nanospheres present excellent electrochemical performance in SIBs. It delivers a high reversible specific capacity of 692 mA h g?1. The NiS2 anode also exhibits excellent high‐rate capability (253 mA h g?1 at 5 A g?1) and long‐term cycling performance (319 mA h g?1 capacity remained even after 1000 cycles at 0.5 A g?1). A dominant pseudocapacitance contribution is identified and verified by kinetics analysis. In addition, the amorphization and conversion reactions during the electrochemical process of the mesoporous NiS2 nanospheres is also investigated by in situ X‐ray diffraction. The impressive electrochemical performance reveals that the NiS2 offers great potential toward the development of next generation large scale energy storage.  相似文献   
93.
High-capacity anode materials are highly desirable for sodium ion batteries.Here,a porous Sb/Sb2O3 nanocomposite is successfully synthesized by the mild oxidization of Sb nanocrystals in air.In the composite,Sb contributes good conductivity and Sb2O3 improves cycling stability,particularly within the voltage window of 0.02-1.5 V.It remains at a reversible capacity of 540 mAh·g-1 after 180 cycles at 0.66 A·g-L Even at 10 A·g-1,the reversible capacity is still preserved at 412 mAh.g-1,equivalent to 71.6% of that at 0.066 A.g-1.These results are much better than Sb nanocrystals with a similar size and structure.Expanding the voltage window to 0.02-2.5 V includes the conversion reaction between Sb2O3 and Sb into the discharge/charge profiles.This would induce a large volume change and high structure strain/stress,deteriorating the cycling stability.The identification of a proper voltage window for Sb/Sb2O3 paves the way for its development in sodium ion batteries.  相似文献   
94.
The assembly of hybrid nanomaterials has opened up a new direction for the construction of high-performance anodes for lithium-ion batteries (LIBs). In this work, we present a straightforward, eco-friendly, one-step hydrothermal protocol for the synthesis of a new type of Fe2O3-SnO2/graphene hybrid, in which zero-dimensional (0D) SnO2 nanoparticles with an average diameter of 8 nm and one-dimensional (1D) Fe2O3 nanorods with a length of ~150 nm are homogeneously attached onto two-dimensional (2D) reduced graphene oxide nanosheets, generating a unique point-line-plane (0D-1D-2D) architecture. The achieved Fe2O3-SnO2/graphene exhibits a well-defined morphology, a uniform size, and good monodispersity. As anode materials for LIBs, the hybrids exhibit a remarkable reversible capacity of 1,530 mA·g?1 at a current density of 100 mA·g?1 after 200 cycles, as well as a high rate capability of 615 mAh·g?1 at 2,000 mA·g?1. Detailed characterizations reveal that the superior lithium-storage capacity and good cycle stability of the hybrids arise from their peculiar hybrid nanostructure and conductive graphene matrix, as well as the synergistic interaction among the components.
  相似文献   
95.
96.
生物模板法合成锂离子电池电极材料研究进展   总被引:1,自引:1,他引:0  
锂离子电池是一类极具潜力的新型二次化学储能器件,被广泛应用于便携式电子设备、电动交通工具和智能电网等领域。高性能电极材料的设计和合成是获得高能量密度、长循环寿命、高安全性锂离子电池的关键。文章针对锂离子电池电极材料存在制备工艺复杂、结构难以控制、活性物质利用率低、循环稳定性和倍率性能差等问题,从生物资源高效利用角度出发,结合生物材料尺寸均匀、形态多变、结构精密、环境友好等优点,综述了生物模板法合成锂离子电池电极材料的研究进展,并对该领域的发展方向进行了展望。  相似文献   
97.
本文研究了Si/C锂离子电池负极材料中K_2CO_3的添加对提高电极电化学性能的作用及其作用机理。采用恒流充放电测试和电化学阻抗谱(EIS)研究了不同K_2CO_3添加量对Si/C负极电化学性能的影响;通过扫描电镜(SEM)和傅里叶红外光谱(FTIR)等方法分析了K_2CO_3添加对Si/C负极在循环过程中结构和成分变化的影响。研究结果表明,加入K_2CO_3后,由于电极在循环过程中结构稳定性增强以及电极的固体电解质界面(SEI)膜阻抗和电荷转移阻抗减少,使Si/C负极的循环稳定性和倍率性能得到明显提高。  相似文献   
98.
夏文明  唐仁衡  王辉  王英  肖方明  朱敏  孙泰 《材料导报》2017,31(10):11-15, 36
以SiO和蔗糖为原料,SiO经高温歧化反应处理后,通过机械球磨、喷雾干燥、高温热解工艺制备出具有优异电化学性能的锂离子电池SiO/C负极材料。经XRD、FTIR、XPS、SEM、TEM结构分析表明,歧化反应处理的片状SiO包含非晶态SiO和纳米晶相Si、SiO_2,蔗糖热解形成的无定形碳包覆在细片状SiO的表面,组成球形SiO/C颗粒。电化学测试结果表明,预歧化处理的SiO/C复合材料的首次放电容量为1 314.6mAh/g,首次库伦效率达到71%;100周循环后的放电容量为851.2mAh/g,容量保持率达到78.5%,循环稳定性远高于未经歧化处理的SiO/C复合材料。电化学性能的提高归因于SiO预歧化反应及热解碳包覆。  相似文献   
99.
张龙飞  江琦 《材料导报》2017,31(Z1):164-168, 177
石墨烯复合材料因具有高比表面积、高比容量、优异的导电性、显著的化学稳定性,在锂离子电池领域具有巨大的应用前景。在负极复合材料中,石墨烯不仅可以形成导电网络提升复合材料的导电性能,而且还可以缓冲材料在充放电过程中的体积效应,提高了材料的倍率性能和循环寿命,为设计大容量高稳定性的锂离子电池提供了理论保证。因此制备不同组成和结构的石墨烯复合材料是一个非常有价值的课题。对近年来国内外运用不同方法制备不同组成和结构的石墨烯复合材料的研究结果做了综合评述和展望。  相似文献   
100.
彭瑜  许晶晶  胡建臣  张克勤 《材料导报》2017,31(Z1):188-194
主要评述了近年来纳米棒、纳米管、纳米带、纳米纤维等一维纳米材料在锂离子电池正负极、隔膜及全固态电池固态电解质中的应用。一维纳米材料的比表面积大、孔隙率高,能为锂离子提供更短的嵌入脱出路径,还能有效缓解电池工作时产生的体积效应,从而大大提高锂离子电池的性能。介绍了不同方法制备的一维纳米材料在锂离子电池中对电化学性能的优化及提升,并重点介绍了具有产业化前景的静电纺丝法制备用于锂离子电池的一维材料近年的发展;展示了一维纳米材料在锂离子电池中的研究进展,并展望了其发展方向。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号