首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45283篇
  免费   4742篇
  国内免费   2512篇
电工技术   1122篇
技术理论   5篇
综合类   2492篇
化学工业   18071篇
金属工艺   2083篇
机械仪表   643篇
建筑科学   1368篇
矿业工程   804篇
能源动力   4314篇
轻工业   1649篇
水利工程   819篇
石油天然气   7749篇
武器工业   185篇
无线电   1825篇
一般工业技术   4165篇
冶金工业   2267篇
原子能技术   324篇
自动化技术   2652篇
  2024年   124篇
  2023年   1268篇
  2022年   1829篇
  2021年   2086篇
  2020年   1975篇
  2019年   1881篇
  2018年   1623篇
  2017年   1716篇
  2016年   1755篇
  2015年   1631篇
  2014年   2469篇
  2013年   2519篇
  2012年   2710篇
  2011年   3016篇
  2010年   2204篇
  2009年   2303篇
  2008年   2011篇
  2007年   2425篇
  2006年   2371篇
  2005年   2064篇
  2004年   1812篇
  2003年   1664篇
  2002年   1441篇
  2001年   1321篇
  2000年   1138篇
  1999年   949篇
  1998年   801篇
  1997年   592篇
  1996年   573篇
  1995年   445篇
  1994年   418篇
  1993年   282篇
  1992年   249篇
  1991年   193篇
  1990年   148篇
  1989年   115篇
  1988年   91篇
  1987年   48篇
  1986年   55篇
  1985年   46篇
  1984年   39篇
  1983年   24篇
  1982年   18篇
  1981年   11篇
  1980年   9篇
  1979年   7篇
  1977年   6篇
  1976年   6篇
  1975年   8篇
  1951年   35篇
排序方式: 共有10000条查询结果,搜索用时 218 毫秒
51.
Lithium‐rich disordered rock‐salt oxides have attracted great interest owing to their promising performance as Li‐ion battery cathodes. While experimental and theoretical efforts are critical in advancing this class of materials, a fundamental understanding of key property changes upon Li extraction is largely missing. In the present study, single‐crystal synthesis of a new disordered rock‐salt cathode material, Li1.3Ta0.3Mn0.4O2 (LTMO), and its use as a model compound to investigate Li concentration–driven evolution of local cationic ordering, charge compensation, and chemical distribution are reported. Through the combined use of 2D and 3D X‐ray nanotomography, it is shown that Li removal accompanied by oxygen oxidation is correlated with the development of morphological defects such as particle cracking. Chemical heterogeneity, quantified by subparticle level distribution of Mn valence state, is minimal during Mn redox, which drastically increases upon the formation of cracks during oxygen redox. Density functional theory and bond valence sum mismatch calculations reveal the presence of local short‐range ordering in the pristine oxide, which gradually disappears along with the extraction of Li. The study suggests that with cycling the transformation into true cation–disordered state can be expected, which likely impacts the voltage profile and obtainable energy density of the oxide cathodes.  相似文献   
52.
Hierarchical-Beta zeolites have been hydrothermally synthesized by adding a new gemini organic surfactant. The used gemini surfactant play the role of a “pore-forming agents” on the mesoscale, on the same time, providing alkaline environment for the system. With this hierarchical Beta zeolite as the core support, we successfully prepared a shell layer of Ni-containing (22 wt%) petal-like core-shell-like catalyst and applied it to bioethanol steam reforming. At the reaction temperature of 350 °C–550 °C, the conversion rate of ethanol and the selectivity of hydrogen were always above 85% and 70%. After reaction of 100 h on stream at 400 °C, there were not obvious inactivation could be observed on NiNPs/OH-MBeta catalyst.  相似文献   
53.
54.
Hierarchical composites represent a class of efficient electrocatalysts for renewable energy storage and conversion technologies owing to the porous structure and additional exposure of metal sites. Herein, a Ni-based metal organic frameworks (MOFs) (marked as Ni-BDC, BDC stands for 1,4-benzenedicarboxylic acid) nanosheet is successfully fabricated on hydroxyl iron oxide (FeOOH) array with carbon fiber cloth (CFC) as substrate. Benefit from the coordination tuning synergistic effect of the distinct chemical composition and the hierarchical structure for fast mass transportation, the as-obtained FeOOH@Ni-BDC illustrates excellent catalytic ability for electrochemical water oxidation with low overpotential of 270 mV to reach 10 mA/cm2 current and good durability in alkaline electrolyte. The novelty of this work lies in the modulation of electronic structure of the FeOOH with Ni-BDC through coordination effect to enhance the activity of the hierarchical composite electrocatalyst. This work is expected to guide the preparation of efficient electrocatalyst for new type alternative energy sources exploitation in near future.  相似文献   
55.
Water electrolysis powered by renewable electricity will likely be critical to a future hydrogen economy. However, the typical use of strongly acidic or alkaline electrolytes necessitates the use of expensive materials, while bubbles add to capital and operational costs, due to blocking of the electrode surface and the necessary use of pumps and gas-liquid separators. Here ‘bubble-free’ oxygen evolution at mild pH is carried out using an electrocatalyst that mimics photosystem II (PSII). The bubble-free electrode includes a gas-extracting Gore-Tex® membrane. Edge-functionalised graphene (EFG) is included to mimic the metal-binding local protein environment, and the tyrosine residue, in the oxygen evolving complex (OEC) of PSII, while MnOx and Ca2+ are incorporated to mimic the Mn4CaO5 cluster. Interaction between EFG, MnOx, and Ca2+ results in a significant, 130 mV fall in the overpotential required to drive electrocatalytic oxygen evolution at 10 mA cm−2, compared to the electrode without these biomimetic components.  相似文献   
56.
Previous studies indicate that the properties of graphene oxide (GO) can be significantly improved by enhancing its graphitic domain size through thermal diffusion and clustering of functional groups. Remarkably, this transition takes place below the decomposition temperature of the functional groups and thus allows fine tuning of graphitic domains without compromising with the functionality of GO. By studying the transformation of GO under mild thermal treatment, we directly observe this size enhancement of graphitic domains from originally ≤40 nm2 to >200 nm2 through an extensive transmission electron microscopy (TEM) study. Additionally, we confirm the integrity of the functional groups during this process by a comprehensive chemical analysis. A closer look into the process confirms the theoretical predicted relevance for the room temperature stability of GO and the development of the composition of functional groups is explained with reaction pathways from theoretical calculations. We further investigate the influence of enlarged graphitic domains on the hydration behaviour of GO and the catalytic performance of single atom catalysts supported by GO. Additionally, we show that the sheet resistance of GO is reduced by several orders of magnitude during the mild thermal annealing process.  相似文献   
57.
SiCf/PyC/SiC and SiCf/BN/SiC mini-composites comprising single tow SiC fibre-reinforced SiC with chemical vapor deposited PyC or BN interface layers are fabricated. The microstructure evolutions of the mini-composite samples as the oxidation temperature increases (oxidation at 1000, 1200, 1400, and 1600?°C in air for 2?h) are observed by scanning electron microscopy, energy dispersive spectrometry, and X-ray diffraction characterization methods. The damage evolution for each component of the as-fabricated SiCf/SiC composites (SiC fibre, PyC/BN interface, SiC matrix, and mesophase) is mapped as a three-dimensional (3D) image and quantified with X-ray computed tomography. The mechanical performance of the composites is investigated via tensile tests.The results reveal that tensile failure occurs after the delamination and fibre pull-out in the SiCf/PyC/SiC composites due to the volatilization of the PyC interface at high temperatures in the air environment. Meanwhile, the gaps between the fibres and matrix lead to rapid oxidation and crack propagation from the SiC matrix to SiC fibre, resulting in the failure of the SiCf/PyC/SiC composites as the oxidation temperature increases to 1600?°C. On the other hand, the oxidation products of B2O3 molten compounds (reacted from the BN interface) fill up the fracture, cracks, and voids in the SiC matrix, providing excellent strength retention at elevated oxidation temperatures. Moreover, under the protection of B2O3, the SiCf/BN/SiC mini-composites show a nearly intact microstructure of the SiC fibre, a low void growth rate from the matrix to fibre, and inhibition of new void formation and the SiO2 grain growth from room to high temperatures. This work provides guidance for predicting the service life of SiCf/PyC/SiC and SiCf/BN/SiC composite materials, and is fundamental for establishing multiscale damage models on a local scale.  相似文献   
58.
Based on that hydrogen energy is widely used in fuel cells, we focus our interests on the design and research of new complexes that catalyze the reaction in both directions, such as hydrogen evolution reactions (HERs) and hydrogen oxidation reactions (HORs). A highly efficient catalyst for both hydrogen evolution and oxidation, based on a nickel(II) complex, [Ni-en-P2](ClO4)2, has been designed and provided by the reaction of Ni(ClO4)2 with N,N′-bis[o-(diphenylphosphino)benzylidene]ethylenediamine (en-P2) in our group. Its structure has been determined by X-ray diffraction. [Ni-en-P2](ClO4)2 can electro-catalyze hydrogen evolution both from acetic acid and a neutral buffer (pH 7.0) with a turnover frequency (TOF) of 204 and 1327 mol of hydrogen per mole of catalyst per hour (H2/mol catalyst/h) under an overpotential (OP) of 914.6 mV and 836.6 mV, respectively. [Ni-en-P2](ClO4)2 also can electro-catalyze hydrogen oxidation with a TOF of 111.7 s−1 under an OP of 330 mV. The results can be attributed to that [NiII-en-P2](ClO4)2 has three good reversible redox waves at 1.01 (NiIII/II), −0.79 (NiII/I) and −1.38 V (NiI/0) versus Fc+/0, respectively. We hope these findings can afford a new method for the design of electrocatalysts for both H2 evolution and H2 oxidation.  相似文献   
59.
Facile yet efficient synthesis of high-performance nanocatalysts for hydrogen evolution from ammonia-borane (AB) hydrolysis is paramount. Here, we reported a novel hybrid nanocatalyst comprised of Rh nanoclusters (1.56 nm in diameters) anchored on nitrogen (N)-doped carbon nanotubes with embedded Ni nanoparticles (Ni@NCNTs), which was fabricated through adsorption of Rh ions on Ni@NCNTs. The achieved hybrid of Rh/Ni@NCNTs displayed excellent catalytic property (Turnover frequency: 959 min−1) toward AB hydrolysis, higher than many prior developed Rh-based catalysts. Note that this hybrid could be reused for at least nine runs with complete AB conversion to hydrogen. Rh nanoclusters with small size exhibiting high atom utilization and the synergetic effect between Ni and Rh are responsible for the excellent catalytic property of Rh/Ni@NCNTs toward AB hydrolysis. This work highlights the importance of utilization of magnetically recyclable Ni@NCNTs as support and synergetic component for efficient hydrolysis of AB.  相似文献   
60.
In the perspective of fuelling the future generations of gas turbines by hydrogen rich syngas, the evaluation of the effect of a higher water vapour content into the flue gases on the TBC used, or potentially usable, is a need. For this purpose YPSZ APS TBC with two different microstructures have been exposed for 500?h at different temperatures in the range 1000?°C–1250?°C either in air and air +20% vol. H2O. The comparison between the different testing conditions has been performed in terms of sintering kinetics and phase stability, as evaluated by thermal diffusivity measurements and Synchrotron X-Rays diffraction, respectively. Furthermore the characterisation of thermal properties of two innovative TBCs (GZO-YPSZ and YAG) potentially able to withstand the CMAS attack and erosive environments, respectively, has been carried out.No clear evidence of a different behaviour of TBC has been observed, at least in the considered aging time and temperature range.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号