首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5071篇
  免费   312篇
  国内免费   46篇
电工技术   209篇
综合类   409篇
化学工业   151篇
金属工艺   25篇
机械仪表   112篇
建筑科学   2054篇
矿业工程   1080篇
能源动力   309篇
轻工业   164篇
水利工程   96篇
石油天然气   20篇
武器工业   7篇
无线电   103篇
一般工业技术   316篇
冶金工业   198篇
原子能技术   26篇
自动化技术   150篇
  2024年   13篇
  2023年   30篇
  2022年   80篇
  2021年   162篇
  2020年   156篇
  2019年   100篇
  2018年   73篇
  2017年   113篇
  2016年   123篇
  2015年   160篇
  2014年   336篇
  2013年   300篇
  2012年   421篇
  2011年   500篇
  2010年   337篇
  2009年   325篇
  2008年   334篇
  2007年   355篇
  2006年   284篇
  2005年   207篇
  2004年   211篇
  2003年   182篇
  2002年   120篇
  2001年   106篇
  2000年   79篇
  1999年   54篇
  1998年   43篇
  1997年   41篇
  1996年   28篇
  1995年   38篇
  1994年   24篇
  1993年   17篇
  1992年   14篇
  1991年   23篇
  1990年   14篇
  1989年   6篇
  1988年   7篇
  1987年   6篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
排序方式: 共有5429条查询结果,搜索用时 10 毫秒
991.
Biocontainment units (BCUs) are facilities used to care for patients with highly infectious diseases. However, there is limited guidance on BCU protocols and design. This study presents the first investigation of how HVAC (heating, ventilation, air‐conditioning) operating conditions influence the dissemination of fluorescent tracer particles released in a BCU. Test conditions included normal HVAC operation and exhaust failure resulting in loss of negative pressure. A suspension of optical brightener powder and water was nebulized to produce fluorescent particles simulating droplet nuclei (0.5‐5 μm). Airborne particle number concentrations were monitored by Instantaneous Biological Analyzers and Collectors (FLIR Systems). During normal HVAC operation, fluorescent tracer particles were contained in the isolation room (average concentration = 1 × 104 ± 3 × 103/Lair). Under exhaust failure, the automated HVAC system maximizes airflow into areas adjacent to isolation rooms to attempt to maintain negative pressure differential. However, 6% of the fluorescent particles were transported through cracks around doors/door handles out of the isolation room via airflow alone and not by movement of personnel or doors. Overall, this study provides a systematic method for evaluating capabilities to contain aerosolized particles during various HVAC scenarios. Recommendations are provided to improve situation‐specific BCU safety.  相似文献   
992.
Window opening and closing is the most preferred behavior for occupants to control their indoor environment in homes. This study aims to identify driving forces for window opening and closing behavior in the home. The additional field survey was carried out for the cooling period after following the previous study. The state of windows and environmental variables for outdoor and indoor were continuously monitored in 23 sample homes over one year. The monitored data provide evidence that there is a statistically significant relationship between window opening behavior and outdoor temperature. The behavior of the occupant's manual control of windows can be described by seasonal effects, occupancy, and time of day. Indoor stimuli, such as such as temperature, humidity, and CO2, can better account for the window opening behavior than can outdoor stimuli. There are clear differences in driving variables between window opening and closing behavior. The closing behavior is better described when the outdoor and indoor variables are combined. Finally, multivariate logistic regression models were developed to predict typical patterns of window opening and closing as a function of indoor and outdoor variables.  相似文献   
993.
Semivolatile organic compounds (SVOCs) emitted from building materials, consumer products, and occupant activities alter the composition of air in residences where people spend most of their time. Exposures to specific SVOCs potentially pose risks to human health. However, little is known about the chemical complexity, total burden, and dynamic behavior of SVOCs in residential environments. Furthermore, little is known about the influence of human occupancy on the emissions and fates of SVOCs in residential air. Here, we present the first‐ever hourly measurements of airborne SVOCs in a residence during normal occupancy. We employ state‐of‐the‐art semivolatile thermal‐desorption aerosol gas chromatography (SV‐TAG). Indoor air is shown consistently to contain much higher levels of SVOCs than outdoors, in terms of both abundance and chemical complexity. Time‐series data are characterized by temperature‐dependent elevated background levels for a broad suite of chemicals, underlining the importance of continuous emissions from static indoor sources. Substantial increases in SVOC concentrations were associated with episodic occupant activities, especially cooking and cleaning. The number of occupants within the residence showed little influence on the total airborne SVOC concentration. Enhanced ventilation was effective in reducing SVOCs in indoor air, but only temporarily; SVOCs recovered to previous levels within hours.  相似文献   
994.
We investigate source characteristics and emission dynamics of volatile organic compounds (VOCs) in a single‐family house in California utilizing time‐ and space‐resolved measurements. About 200 VOC signals, corresponding to more than 200 species, were measured during 8 weeks in summer and five in winter. Spatially resolved measurements, along with tracer data, reveal that VOCs in the living space were mainly emitted directly into that space, with minor contributions from the crawlspace, attic, or outdoors. Time‐resolved measurements in the living space exhibited baseline levels far above outdoor levels for most VOCs; many compounds also displayed patterns of intermittent short‐term enhancements (spikes) well above the indoor baseline. Compounds were categorized as “high‐baseline” or “spike‐dominated” based on indoor‐to‐outdoor concentration ratio and indoor mean‐to‐median ratio. Short‐term spikes were associated with occupants and their activities, especially cooking. High‐baseline compounds indicate continuous indoor emissions from building materials and furnishings. Indoor emission rates for high‐baseline species, quantified with 2‐hour resolution, exhibited strong temperature dependence and were affected by air‐change rates. Decomposition of wooden building materials is suggested as a major source for acetic acid, formic acid, and methanol, which together accounted for ~75% of the total continuous indoor emissions of high‐baseline species.  相似文献   
995.
Exposure to radon gas is the second leading cause of lung cancer worldwide behind smoking. Changing the energy characteristics of a dwelling can influence both its thermal and ventilative properties, which can affect indoor air quality. This study uses radon measurements made in 470 689 UK homes between 1980 and 2015, linked to dwelling information contained within the Home Energy Efficiency Database (HEED). The linked dataset, the largest of its kind, was used to analyze the association of housing and energy performance characteristics with indoor radon concentrations in the UK. The findings show that energy efficiency measures that increase the airtightness of properties are observed to have an adverse association with indoor radon levels. Homes with double glazing installed had radon measurements with a significantly higher geometric mean, 67% (95% CI: 44, 89) greater than those without a recorded fabric retrofit. Those with loft insulation (47%, 95% CI: 26, 69) and wall insulation (32%, 95% CI: 11, 53) were also found to have higher radon readings. Improving the energy performance of the UK's housing stock is vital in meeting carbon emission reduction targets. However, compromising indoor air quality must be avoided through careful assessment and implementation practices.  相似文献   
996.
Ventilation systems for commercial airliner cabins are important in reducing contaminant transport and maintaining thermal comfort. To evaluate the performance of a personalized displacement ventilation system, a conventional displacement ventilation system, and a mixing ventilation system, this study first used the Wells‐Riley equation integrated with CFD to obtain the SARS quanta value based on a specific SARS outbreak on a flight. This investigation then compared the three ventilation systems in a seven‐row section of a fully occupied, economy‐class cabin in Boeing 737 and Boeing 767 airplanes. The SARS quanta generation rate obtained for the index patient could be used in future studies. For all the assumed source locations, the passengers’ infection risk by air in the two planes was the highest with the mixing ventilation system, while the conventional displacement ventilation system produced the lowest risk. The personalized ventilation system performed the best in maintaining cabin thermal comfort and can also reduce the infection risk. This system is recommended for airplane cabins.  相似文献   
997.
The air composition and reactivity from outdoor and indoor mixing field campaign was conducted to investigate the impacts of natural ventilation (ie, window opening and closing) on indoor air quality. In this study, a thermal desorption aerosol gas chromatograph (TAG) obtained measurements of indoor particle‐ and gas‐phase semi‐ and intermediately volatile organic compounds both inside and outside a single‐family test home. Together with measurements from a suite of instruments, we use TAG data to evaluate changes in indoor particles and gases at three natural ventilation periods. Positive matrix factorization was performed on TAG and adsorbent tube data to explore five distinct chemical and physical processes occurring in the indoor environment. Outdoor‐to‐indoor transport is observed for sulfate, isoprene epoxydiols, polycyclic aromatic hydrocarbons, and heavy alkanes. Dilution of indoor species is observed for volatile, non‐reactive species including methylcyclohexane and decamethylcyclopentasiloxane. Window opening drives enhanced emissions of semi‐ and intermediately volatile species including TXIB, DEET, diethyl phthalate, and carvone from indoor surfaces. Formation via enhanced oxidation was observed for nonanal and 2‐decanone when outdoor oxidants entered the home. Finally, oxidative depletion of gas‐phase terpenes (eg, limonene and α‐pinene) was anticipated but not observed due to limited measurement resolution and dynamically changing conditions.  相似文献   
998.
Singer BC  Delp WW  Price PN  Apte MG 《Indoor air》2012,22(3):224-234
The performance metrics of airflow, sound, and combustion product capture efficiency (CE) were measured for a convenience sample of 15 cooking exhaust devices, as installed in residences. Results were analyzed to quantify the impact of various device- and installation-dependent parameters on CE. Measured maximum airflows were 70% or lower than values noted on product literature for 10 of the devices. Above-the-cooktop devices with flat-bottom surfaces (no capture hood)--including exhaust fan/microwave combination appliances--were found to have much lower CE at similar flow rates, compared to devices with capture hoods. For almost all exhaust devices and especially for rear-mounted downdraft exhaust and microwaves, CE was substantially higher for back compared with front burner use. Flow rate, and the extent to which the exhaust device extends over the burners that are in use, also had a large effect on CE. A flow rate of 95 liters per second (200 cubic feet per minute) was necessary, but not sufficient, to attain capture efficiency in excess of 75% for the front burners. A-weighted sound levels in kitchens exceeded 56 dB* when operating at the highest fan setting for all 14 devices evaluated for sound performance. PRACTICAL IMPLICATIONS: Natural gas cooking burners and many cooking activities emit pollutants that can reach hazardous levels in homes. Venting range hoods and other cooking exhaust fans are thought to provide adequate protection when used. This study demonstrates that airflows of installed devices are often below advertised values and that less than half of the pollutants emitted by gas cooking burners are removed during many operational conditions. For many devices, achieving capture efficiencies that approach or exceed 75% requires operation at settings that produce prohibitive noise levels. While users can improve performance by preferentially using back burners, results suggest the need for improvements in hood designs to achieve high pollutant capture efficiencies at acceptable noise levels.  相似文献   
999.
Trombe墙又被称为“会呼吸的墙”,它是一种以太阳能为驱动力的自然通风的方式,高度和宽度是其两个重要的参数。本文以Trombe墙为研究对象,采用数值模拟计算的方法研究了其高度和宽度之间的对应关系。  相似文献   
1000.
介绍了湖北荆门热电厂通风除尘系统设计和设备选择。根据各建筑空间不同的使用要求,采用了不同的通风系统。针对煤仓间的特殊性,采用了半集中除尘系统。该工程的设计参数和系统选型经验可供热电厂通风除尘系统设计参考。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号