首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23101篇
  免费   1420篇
  国内免费   830篇
电工技术   404篇
综合类   1510篇
化学工业   1685篇
金属工艺   756篇
机械仪表   2656篇
建筑科学   345篇
矿业工程   259篇
能源动力   6184篇
轻工业   116篇
水利工程   24篇
石油天然气   684篇
武器工业   621篇
无线电   2859篇
一般工业技术   3738篇
冶金工业   180篇
原子能技术   151篇
自动化技术   3179篇
  2024年   46篇
  2023年   237篇
  2022年   469篇
  2021年   497篇
  2020年   465篇
  2019年   412篇
  2018年   435篇
  2017年   564篇
  2016年   566篇
  2015年   585篇
  2014年   1129篇
  2013年   956篇
  2012年   1401篇
  2011年   2087篇
  2010年   1354篇
  2009年   1445篇
  2008年   1246篇
  2007年   1526篇
  2006年   1487篇
  2005年   1158篇
  2004年   1055篇
  2003年   924篇
  2002年   808篇
  2001年   658篇
  2000年   619篇
  1999年   565篇
  1998年   477篇
  1997年   457篇
  1996年   399篇
  1995年   269篇
  1994年   219篇
  1993年   174篇
  1992年   158篇
  1991年   148篇
  1990年   96篇
  1989年   118篇
  1988年   59篇
  1987年   16篇
  1986年   12篇
  1985年   4篇
  1984年   7篇
  1983年   6篇
  1982年   11篇
  1980年   4篇
  1978年   2篇
  1977年   2篇
  1976年   3篇
  1975年   5篇
  1974年   2篇
  1973年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
Optical studies of residual strain in cadmium telluride (CdTe) films grown using molecular beam epitaxy on gallium arsenide (GaAs) substrate have been performed using photoreflectance techniques. Measurements have been conducted to determine the fundamental transition energy, heavy-hole and light-hole transition energy critical-point parameters in a range of temperatures between 12 and 300 K. There are problems inherent in the fabrication of optoelectronic devices using high-quality CdTe films, due to strain effects resulting from both the lattice mismatch (CdTe: 14.6%) and the thermal expansion coefficient difference. The CdTe film exhibits compressive stress causing valence-band splitting for light and heavy holes. We have used different models to fit the obtained experimental data and, although the critical thickness for the CdTe has been surpassed, the strain due to the lattice mismatch is still significant. However, the strain due to the thermal expansion is dominant. We have found that the fundamental transition energy, E0, is affected by the compressive strain and the characteristic values are smaller than those reported. In addition, the total strain is compressive for the full measured range, since the strain due to the lattice mismatch is one order of magnitude higher than that calculated from the thermal expansion.  相似文献   
12.
The influence of the environment on the excited state transitions of meso-tetrakis(p-sulfonatophenyl) porphyrin (TPPS) is reported. TPPS was investigated in protonated and non-protonated forms, and in the presence of the cationic cetyltrimethylammonium bromide (CTAB) micelles. The singlet excited-state absorption spectra were measured by using the white-light continuum Z-scan technique and the triplet–triplet absorption spectra were acquired employing an association of laser flash photolysis and Z-scan techniques. Our results show that the perseveration of the molecular symmetry, upon excitation, depends on the state of multiplicity of the molecules, as well as on the environment and structural characteristics of the porphyrin. Additionally, it was observed that for excited molecules, the ring distortion caused by the protonation of porphyrin ring has great influence on the changes observed for the symmetry and vibronic structure. The results clearly show that the porphyrin investigated is a promising candidate for optical limiting applications for all investigated environments.  相似文献   
13.
We report on conductivity and optical property of three different types of poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) films [pristine PH1000 film (PH1000-p), with 5 wt.% ethylene glycol additive (PH1000-EG) and with sulfuric acid post-treatment (PH1000-SA)] before and after polyethylenimine (PEI) treatment. The PEI is found to decrease the conductivity of all the PEDOT:PSS films. The processing solvent of 2-methoxyethanol is found to significantly enhance the conductivity of PH1000-p from 1.1 up to 744 S/cm while the processing solvent of isopropanol or water does not change the conductivity of PH1000-p much. As for the optical properties, the PEI treatment slightly changes the transmittance and reflectance of PH1000-p and PH1000-EG films, while the PEI leads to an substantial increase of the absorptance in the spectral region of 400–1100 nm of the PH1000-SA films. Though the optical property and conductivity of the three different types of PEDOT:PSS films vary with the PEI treatment, the treated PEDOT:PSS films exhibit similar low work function. We demonstrate solar cells with a simple device structure of glass/low-WF PEDOT:PSS/P3HT:ICBA/high-WF PEDOT:PSS cells that exhibit good performance with open-circuit voltage of 0.82 V and fill factor up to 0.62 under 100 mW/cm2 white light illumination.  相似文献   
14.
《Ceramics International》2022,48(3):3652-3658
Digital light processing (DLP) is one of the most important additive manufacture technologies to fabricate ceramic parts with complex geometries. Compared with pure photosensitive resin, the cure performance of ceramic suspensions is obviously different due to the optical property change after the addition of ceramic powders. In this paper, a unique oxidation process was used to modify the optical properties of nitride powders including AlN and Si3N4. The properties of oxidized ceramics were investigated and the cure performance of ceramic suspensions was then characterized. The effect of oxidation time on cure performance was evaluated. The results showed that for AlN, oxidation process leads to the smaller cure depth and smaller excess cure width as compared with non-oxidized AlN and for Si3N4, oxidation process leads to the larger cure depth and larger excess cure width as compared with non-oxidized Si3N4, indicating that both refractive index and light absorbance of ceramic powders have obvious effects on cure behaviors. Additionally, the cure behavior of oxidized ceramic suspension in this study shows that the relationship of cure depth vs. incident energy agrees well with Beer- Lambert model, but the excess cure width vs. incident energy is not consistent with quasi Beer-Lambert model due to the nature of digital micromirror device (DMD).  相似文献   
15.
PurposeTo investigate the relationship between the real contact lens imprint into the conjunctival tissue, observed by optical coherence tomography (OCT) and conjunctival staining and contact lens wearing comfort.Methods17 participants (mean age = 26.6 SD ± 3.6 years; 7 females) were fitted with three different contact lenses base curves of the same silicone hydrogel custom lens type (Visell 50; Hecht Contactlinsen, Au, Germany) in a randomised order. One lens was optimally fitted according to the manufacturer's recommendation, one fitted 0.4 mm flatter and one fitted 0.4 mm steeper. After 4 h of lens wear the contact lens edge in the area of the conjunctiva was imaged nasally and temporally using OCT (Optovue iVue SD-OCT). To correct the artefact due to optical distortion with OCT, the imprint of all worn lenses was measured on a glass plate afterwards. Conjunctival staining in the limbal region after 4 h of lens wear was classified using the CCLRU Grading Scale. Comfort scoring was based on visual analog scales from 0 (very poor) to 100 (excellent).ResultsThe mean conjunctival imprint of all contact lens edges was 32.0 ± 8.1 μm before and 7.3 ± 6.5 μm after distortion correction of the OCT images. The distortion corrected conjunctival imprint with the 0.4 mm steeper lens (11.5 ± 6.2 μm) was statistically significantly greater compared to the optimally fitted lens (6.5 ± 5.9 μm) (One-way ANOVA followed Tukey-test; p = 0.017) and greater compared to the 0.4 mm flatter lens (3.9 ± 5.3 μm) (p < 0.001). There was no statistically significant difference between the optimally fitted lens and the 0.4 mm flatter lens (p = 0.209). The nasally measured imprint (11.4 ± 9.0 μm) was significantly greater than the temporally measured (3.3 ± 7.6 μm) (p < 0.001). There was no statistically significant correlation between the amount of conjunctival imprint and the graded conjunctival staining (p = 0.346) or the wearer’s comfort (p = 0.735).ConclusionsContact lens edges imaged by OCT exhibited displacement artefacts. The observed conjunctival imprints are a combination of real conjunctival compression and artefacts. A deeper imprint of the contact lens into the conjunctiva caused by a steeper base curve was not related to clinically significant staining or changes in comfort after 4 h of lens wear. The observed differences between nasal and temporal imprint are likely to be caused by variations of conjunctival thickness and the shape of the underlying sclera.  相似文献   
16.
C-axis textured thin films of gallium-doped indium zinc oxide (GIZO) with a 2% ratio of Ga/Zn, were obtained via RF-magnetron sputtering with high transparency and electrical conductivity. A Box-Behnken response surface design was used to evaluate the effects of the deposition parameters (In2O3 target power, deposition time, and substrate temperature) on the chemical composition, optical, electrical, and structural properties of the GIZO films. The optical constants and the electrical properties were obtained using optical models. The GIZO stoichiometry, and therefore the In/Zn atomic ratio, affected the crystallinity, crystalline parameters, band gap, and charge carrier mobility of the GIZO films. The charge carrier density was related to the change in the crystalline parameters of the hexagonal structure and the In/Zn atomic ratio. The best electrical conductivity values (1.75?×?103 Ω?1 cm?1) were obtained for GIZO films with In/Zn ratio ≥?1. Several figures of merit (FOM) defined for the visible and solar regions were comparatively used to select the optimal In/Zn atomic ratio that provided the best balance between the conductivity and the transparency. The optimal In/Zn ratio was in a range of 0.85–0.90 for the GIZO films.  相似文献   
17.
This paper deals with the modelling and the identification of an electromechanical Diesel engine actuator. The studied Bosch GPA-S actuator is designed for swirl/tumble flaps to control the air amount entering into the cylinder. This study aims to design a complete simulator that reproduces, with sufficient accuracy, the actuator dynamics taking into account the effects of the friction phenomenon. Hence, an overview of the actuator structure and its operation principle is first given. Then, its mathematical model as well as the nonlinearity, related to its behaviour, is discussed. Next, three identification procedures, which allow estimating both the system parameters and the friction model coefficients, are introduced. Finally, simulation results, using MATLAB, and experimental results, using LabVIEW, are presented demonstrating the effectiveness of the proposed techniques.  相似文献   
18.
Measuring nonlinear optical response of a specific material in a mixture, not only leads to investigate the behavior of a particular component in various circumstances, but also can be a way to select suitable combination and optimum concentration of additives and therefore obtaining the maximum nonlinear optical signals. In this work, by using dual-arm Z-scan technique, the nonlinear refractive index of Disperse Red1 (DR1) organic dye molecules inside the core of prepared polymeric nanocapsules was measured among various materials which prepared nanocapsules were made of them. Then the measured value was compared with nonlinear refractive index of DR1 solved in dichloromethane.  相似文献   
19.
Undoped and fluorine doped ZnO thin films were deposited onto glass substrates using successive ionic layer adsorption and reaction (SILAR) technique and then annealed at 350 °C in vacuum ambience. The F doping level was varied from 0 to 15 at% in steps of 5 at%. The XRD analysis showed that all the films are polycrystalline with hexagonal wurtzite structure and preferentially oriented along the (002) plane. Crystallite sizes were found to increase when 5 at% of F is doped and then decreased with further doping. It was seen from the SEM images that the doping causes remarkable changes in the surface morphology and the annealing treatment results in well-defined grains with an improvement in the grain size irrespective of doping level. All the films exhibit good transparency (>70%) after vacuum annealing. Electrical resistivity of the film was found to be minimum (1.32×10−3 Ω cm) when the fluorine doping level was 5 at%.  相似文献   
20.
In 2018, Mishik Airazatovich Kazaryan received the highest award of the International Association for Alternative Energy and Ecology - Order of Antoine de Saint-Exupéry “For Improving the Quality of Life on the Planet of People” (IAAEE) on nominating the Award Committee of the Editorial Board of the International Scientific Journal for Alternative Energy and Ecology (ISJAEE). The award was given for his outstanding contribution to development of alternative energetics and ecology. M.A. Kazaryan's prominent contribution to the development of alternative energetics and ecology is based on his pioneering works in the field of development of methods for producing hydrogen as environmentally friendly safe fuel, as well as works in the field of processing organic compounds by various physical methods. As a part of joint research with colleagues from Lebedev Physical Institute of RAS (LPI), M.A. Kazaryan participated in creation of new methods for producing hydrogen from various chemical compounds. The method of conversion of liquid-phase compounds in plasma discharges under the influence of intensive ultrasonic cavitation occupies a special place. In the course of these works, it is shown that low-temperature plasma initiated in liquid-phase media in discharge between electrodes is able to effectively decompose hydrogen-containing molecules of organic compounds and form gaseous products where the part of hydrogen is more than 90%. Estimations of energy efficiency calculated taking into account hydrogen combustion heat and initial substances, as well as electricity costs, showed an efficiency level of about 60–70% in depending on the composition of the starting mixture. Another notable contribution of M.A. Kazaryan to the development of alternative energetics was the work on the optimization and justification of technological and structural parameters of energy discharge devices based on high-voltage pulse-periodic discharge for creating a reactor for plasmachemical processing of polymer wastes into hydrogen and other valuable compounds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号