首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1683篇
  免费   49篇
  国内免费   12篇
电工技术   286篇
综合类   33篇
化学工业   306篇
金属工艺   31篇
机械仪表   22篇
建筑科学   5篇
矿业工程   2篇
能源动力   962篇
石油天然气   5篇
无线电   10篇
一般工业技术   39篇
冶金工业   6篇
原子能技术   1篇
自动化技术   36篇
  2024年   2篇
  2023年   42篇
  2022年   81篇
  2021年   63篇
  2020年   67篇
  2019年   67篇
  2018年   48篇
  2017年   56篇
  2016年   27篇
  2015年   30篇
  2014年   77篇
  2013年   62篇
  2012年   99篇
  2011年   179篇
  2010年   160篇
  2009年   106篇
  2008年   131篇
  2007年   147篇
  2006年   93篇
  2005年   52篇
  2004年   66篇
  2003年   33篇
  2002年   20篇
  2001年   16篇
  2000年   7篇
  1999年   7篇
  1998年   4篇
  1996年   2篇
排序方式: 共有1744条查询结果,搜索用时 0 毫秒
121.
A small air-breathing proton exchange membrane fuel cell with a cylindrical configuration (Cy-PEMFC) and a helical flow-channel was developed to provide a uniform contact pressure to the membrane electrode assembly (MEA) with a thin cathode current collector. A comparison of the contact pressure and performance of the Cy-PEMFC and general planar PEMFC was performed to determine the effect of the cylindrical configuration. For the contact pressure comparison, numerical analysis was performed using commercial software. Numerical analysis showed that the Cy-PEMFC has its own structural advantage of changing the applied clamping pressure to a uniformly distributed contact pressure. The actual pressure measurements were carried out with pressure-sensitive film to support results of numerical analysis. These results also showed that the Cy-PEMFC had a uniformly distributed contact pressure, whereas the planar PEMFC did not. The polarization curves of both PEMFCs were measured to determine the performance variations caused by the uniform contact pressure and better mass transfer. The maximum power density of the Cy-PEMFC was 220 mW/cm2, which was approximately 24% higher than the planar PEMFC.  相似文献   
122.
This study presented an integration platform for a methanol reformer and high‐temperature proton exchange membrane fuel cell (PEMFC). The methanol micro‐reformer was combined with the catalytic reaction section and reforming section, whereas the catalytic reaction section with Pt catalysis maintained the constant temperature environment for a reforming process. SRM reforming results showed that 74 to 74.9% hydrogen and 23.5 to 25.7% of carbon dioxide in the mixture product, and less than 2% of carbon monoxide, was produced. Using the reforming product of low carbon monoxide concentration and the highest methanol conversion rate, a micro reformer link with a fuel cell integration experiment was performed. Results showed a high temperature PEMFC with 3 to 4 W power output under methanol flow rates of 15 ml/hr. Due to the lower hydrogen pressure supplied from the micro reformer, the fuel cell power output may become unstable. © 2010 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/htj.20322  相似文献   
123.
The implementation of fuel cell vehicles requires a supervisory control strategy that manages the power distribution between the fuel cell and the energy storage device. Some of the current problems with power management strategies are: fuel efficiency optimization methods require prior knowledge of the driving cycle before they can be implemented, the impact on the fuel cell and battery life cycle are not considered and finally, there are no standardized measures to evaluate the performance of different control methods. In addition to that, the performances of different control methods for power management have not been directly compared using the same mathematical models. The proposed work will present a different optimization approach that uses fuel mass flow rate instead of fuel mass consumption as the cost function and thus, it can be done instantaneously and does not require knowledge of the driving cycle ahead of time. Also this study presents an experimental approach to validate the mathematical simulation results.  相似文献   
124.
The fuel cell performance of a composite PBI-based membrane with TiO2 has been studied. The behaviour of the membrane has been evaluated by comparison with the fuel cell performance of other PBI-based membranes, all of which were cast from the same polymer with the same molecular weight. The PBI composite membrane incorporating TiO2 showed the best performance and reached 1000 mW cm−2 at 175 °C. Moreover, this new titanium composite PBI-based membrane also showed the best stability during the preliminary long-term test under our operation conditions. Thus, the slope of the increase in the ohmic resistance of the composite membrane was 0.041 mΩ cm2 h−1 and this is five times lower than that of the standard PBI membrane. The increased stability was due to the high phosphoric acid retention capacity - as confirmed during leaching tests, in which the Ti-based composite PBI membrane retained 5 mol of H3PO4/PBI r.u. whereas the PBI standard membrane only retained 1 mol H3PO4/PBI r.u. Taking into account the results obtained in this study, the TiO2-PBI based membranes are good candidates as electrolytes for high temperature PEMFCs.  相似文献   
125.
Generally, multi-phase models for the proton exchange membrane fuel cell (PEMFC) that seek to capture the local transport phenomena are inherently non-linear with high computational overhead. We address the latter with a reduced multi-phase, multicomponent, and non-isothermal model that is inexpensive to compute without sacrificing geometrical resolution and the salient features of the PEMFC - this is accomplished by considering a PEMFC equipped with porous-type flow fields coupled with scaling arguments and leading-order asymptotics. The reduced model is verified with the calibrated and validated full model for three different experimental fuel cells: good agreement is found. Overall, memory requirements and computational time are reduced by around 2-3 orders of magnitude. In addition, thermal decoupling is explored in an attempt to further reduce computational cost. Finally, we discuss how other types of flow fields and transient conditions can be incorporated into the mathematical and numerical framework presented here.  相似文献   
126.
This study presents an improved Tank in Series Reactor (TSR) Proton Exchange Membrane (PEM) fuel cell model with mass and energy balance equations accounting for evaporation and condensation in cathode channels. The TSR model includes the modified charge balance equation suitable for potentiostatic fuel cell operation mode. Polarization curves calculated with the improved model agree with experimental data from the literature. The developed TSR model is able to predict the limiting two-dimensional profiles in PEMFC. Simulation results illustrate the influence of co-current and counter current mode on PEM fuel cell performance.  相似文献   
127.
During system development, large-scale, complex energy systems require multi-disciplinary efforts to achieve system quality, cost, and performance goals. As systems become larger and more complex, the number of possible system configurations and technologies, which meet the designer’s objectives optimally, increases greatly. In addition, both transient and environmental effects may need to be taken into account. Thus, the difficulty of developing the system via the formulation of a single optimization problem in which the optimal synthesis/design and operation/control of the system are achieved simultaneously is great and rather problematic. This difficulty is further heightened with the introduction of uncertainty analysis, which transforms the problem from a purely deterministic one into a probabilistic one. Uncertainties, system complexity and nonlinearity, and large numbers of decision variables quickly render the single optimization problem unsolvable by conventional, single-level, optimization strategies.To address these difficulties, the strategy adopted here combines a dynamic physical decomposition technique for large-scale optimization with a response sensitivity analysis method for quantifying system response uncertainties to given uncertainty sources. The feasibility of such a hybrid approach is established by applying it to the synthesis/design and operation/control of a 5 kW proton exchange membrane (PEM) fuel cell system.  相似文献   
128.
This work numerically investigates the influence of the channel cross-section aspect ratio (defined as the ratio height/width) on the performance of a PEM fuel cell with serpentine flow field (SFF) design. The local current densities, velocity distributions, liquid water concentration in the membrane, hydrogen and oxygen concentrations and temperature were analyzed in the PEM fuel cell for 10 different aspect ratios, varying between 0.07 and 15, to understand the channel cross-section aspect ratio effect. The area of the channel cross section (1.06 mm2) and the total effective reactive area of the PEM fuel cell (256 mm2) were maintained constant in all cases. The obtained results show that at low operating voltages the cell performance is independent of the channel cross-section aspect ratio. At high operating voltages, where the influence of mass transporting velocity is predominant, as the channel cross-section aspect ratio increases the cell performance is improved. The models with high aspect ratio show, in general, more uniform current distributions, with the higher maximum and minimum intensity values, temperature distributions with smaller gradients and a superior contain of water in the membrane, which allows to obtain a higher performance. From these models the 10/06 and 12/05 aspect ratio present the best combination of variables, as shown by their polarization curves.  相似文献   
129.
Tribological variations, surface conditions (roughness, hardness, coating) and surface interactions between micro-stamping dies and bipolar plate blanks play a critical role in determining the surface quality, channel formation and precision of bipolar plates. This study is aimed to understand the cause, mechanism and consequences of interactions between micro-stamping process conditions and bipolar plate quality. A total of 2000 repeated micro-stamping of 51 μm-thick uncoated and 1 μm-thick ZrN coated SS316L sheet blanks into an array of 750 μm micro-channels were performed using 175-220 kN force levels with constant stamping speed of 1 mm/s. Microscopic examinations were conducted periodically on both die and coated & uncoated plate surfaces to observe topographic variations. In addition, corrosion and contact resistance tests were carried out in the same intervals. Analysis of variance (ANOVA) technique was used to determine the significance of the process parameters on channel height, roughness, corrosion and contact resistance differences. The results revealed similar roughness trends for die and plate surfaces during 2000 micro-stampings. ZrN coating with 1 μm thickness dramatically improved corrosion and contact resistance behavior of plates.  相似文献   
130.
In this paper, an electrochemical‐based proton exchange membrane fuel cell (PEMFC) model suitable for engineering applications is presented. In order to improve the accuracy of this model so that it can reflect the actual PEMFC performance better, its parameters are optimized by means of a modified particle swarm optimization (MPSO). The MPSO is a modified method for the PSO's inertia weight. The proposed inertia weight is calculated according to the distance of the particle's current position from the best solution of the entire swarm. The obtained results of the PEMFC model with optimized parameters agree with experimental data well. Therefore, the MPSO is a helpful and reliable technique for optimizing the model parameters and can be used to solve other complex parameter optimization problems of fuel cell models. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号