首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1675篇
  免费   57篇
  国内免费   12篇
电工技术   286篇
综合类   33篇
化学工业   306篇
金属工艺   31篇
机械仪表   22篇
建筑科学   5篇
矿业工程   2篇
能源动力   962篇
石油天然气   5篇
无线电   10篇
一般工业技术   39篇
冶金工业   6篇
原子能技术   1篇
自动化技术   36篇
  2024年   2篇
  2023年   42篇
  2022年   81篇
  2021年   63篇
  2020年   67篇
  2019年   67篇
  2018年   48篇
  2017年   56篇
  2016年   27篇
  2015年   30篇
  2014年   77篇
  2013年   62篇
  2012年   99篇
  2011年   179篇
  2010年   160篇
  2009年   106篇
  2008年   131篇
  2007年   147篇
  2006年   93篇
  2005年   52篇
  2004年   66篇
  2003年   33篇
  2002年   20篇
  2001年   16篇
  2000年   7篇
  1999年   7篇
  1998年   4篇
  1996年   2篇
排序方式: 共有1744条查询结果,搜索用时 15 毫秒
131.
During system development, large-scale, complex energy systems require multi-disciplinary efforts to achieve system quality, cost, and performance goals. As systems become larger and more complex, the number of possible system configurations and technologies, which meet the designer’s objectives optimally, increases greatly. In addition, both transient and environmental effects may need to be taken into account. Thus, the difficulty of developing the system via the formulation of a single optimization problem in which the optimal synthesis/design and operation/control of the system are achieved simultaneously is great and rather problematic. This difficulty is further heightened with the introduction of uncertainty analysis, which transforms the problem from a purely deterministic one into a probabilistic one. Uncertainties, system complexity and nonlinearity, and large numbers of decision variables quickly render the single optimization problem unsolvable by conventional, single-level, optimization strategies.To address these difficulties, the strategy adopted here combines a dynamic physical decomposition technique for large-scale optimization with a response sensitivity analysis method for quantifying system response uncertainties to given uncertainty sources. The feasibility of such a hybrid approach is established by applying it to the synthesis/design and operation/control of a 5 kW proton exchange membrane (PEM) fuel cell system.  相似文献   
132.
The paper deals with the synthesis and characterisation of proton-conducting ionic liquids (PCILs) and their polymer electrolytes obtained by blending modified Nafion membranes with different concentrations of PCILs. The PCILs are obtained by the neutralization of triethylamine with different organic acids. The first part of the paper studies the influence of acidity and acid structure on PCIL thermal and electrochemical performance, while the second part examines membrane conductivity and reveals it to depend more on PCIL structure than on its intrinsic conductivity. At 130 °C, conductivities exceeding 10 mS cm−1 were obtained in fully anhydrous conditions.  相似文献   
133.
In this study, we investigated the additive treatment effect of TiO2 as alternative support materials to common carbon black for Pt-based electrocatalysts on electrocatalytic activity for oxygen reduction reaction (ORR). The shape of TiO2 was varied by hydrothermal treatment with various additives, such as urea, thiourea, and hydrofluoric acid. From the results of transmission electron microscopy (TEM) images and ultraviolet-visible spectroscopy (UV-vis) spectra, it was identified that the morphology of hydrofluoric acid (HF)-treated TiO2 was changed into a round shape having lower aspect ratio than other samples, and its band gap was decreased. Notably, the electronic state of HF-treated TiO2 support was changed into highly reduced (electron rich) state which led to the increase of ORR activity, compared to other samples treated with different additives or before treatment. The electrocatalytic characteristics changes after treatment with various additives were investigated by using X-ray diffraction (XRD), X-ray photoemission spectroscopy (XPS), cyclic voltammograms (CV), and rotating disk electrode (RDE) techniques.  相似文献   
134.
Ag@Pt core–shell nanoparticles with different Ag/Pt ratios were supported on multi walled carbon nanotubes (MWCNTs) and used as electrocatalysts for PEMFC. The morphology of the electrocatalyst samples was characterized by XRD and HRTEM. It was found that the Ag@Pt/MWCNTs catalyst exhibited a core–shell nanostructure. And the CV and LSV results demonstrated that such core–shell materials exhibited attractive electrocatalytic activity. Moreover, the specific electrochemically active area (EAS) of the Ag@Pt/MWCNTs catalyst is 70.63 m2 g−1, which is higher than the values reported in the literature.  相似文献   
135.
This paper presents, for the first time, a five-cell polymer electrolyte membrane fuel cell (PEMFC) short stack with electrodeposited hydrogen diffusion anodes. The anodes were manufactured by means of galvanostatic pulse electrodeposition and the cathodes by air-brushing. Nafion® 212 was employed as a solid polymer electrolyte membrane in all cases. The short stack, whose cells had an active geometric area of 14 cm2, was assembled and tested under different operating conditions. A peak power of about 11 W was obtained at 50 °C and atmospheric pressure using hydrogen and air feed, whereas a smaller value of 8.6 W was obtained from a five-cell short PEMFC stack with conventional hydrogen diffusion anodes under the same operating conditions. The better performance of the cells described in this paper has been assigned to the higher utilization of the platinum in the electrodeposited anodes compared to the conventional ones.  相似文献   
136.
The fuel cell performance of a composite PBI-based membrane with TiO2 has been studied. The behaviour of the membrane has been evaluated by comparison with the fuel cell performance of other PBI-based membranes, all of which were cast from the same polymer with the same molecular weight. The PBI composite membrane incorporating TiO2 showed the best performance and reached 1000 mW cm−2 at 175 °C. Moreover, this new titanium composite PBI-based membrane also showed the best stability during the preliminary long-term test under our operation conditions. Thus, the slope of the increase in the ohmic resistance of the composite membrane was 0.041 mΩ cm2 h−1 and this is five times lower than that of the standard PBI membrane. The increased stability was due to the high phosphoric acid retention capacity - as confirmed during leaching tests, in which the Ti-based composite PBI membrane retained 5 mol of H3PO4/PBI r.u. whereas the PBI standard membrane only retained 1 mol H3PO4/PBI r.u. Taking into account the results obtained in this study, the TiO2-PBI based membranes are good candidates as electrolytes for high temperature PEMFCs.  相似文献   
137.
The purpose of this study is to perform an energetic-exergetic comparison between two micro-cogenerative (CHP) units for residential applications, based on Proton Exchange Membrane fuel cell (PEMFC) and Solid Oxide Fuel Cell (SOFC) respectively. Such systems, both fed by natural gas, are dedicated to electricity and heat production for typical residential users. Simulations of two zero-dimensional models in Aspen Plus environment have been conducted in order to perform the comparison. Results obtained by the simulations have been compared on the basis of the First and the Second Law efficiencies aiming to find the most advantageous technology for small residential applications. Results analyses indicate that the PEMFC-based CHP system, operating at atmospheric pressure and low temperature, is the most efficient system.  相似文献   
138.
139.
A segmented cell system was applied to investigate the effects of the anode and cathode back pressure and hydrogen stoichiometry on fuel cell performance in terms of overpotential distributions along the flow field. The segmented cell system was designed with closed loop Hall sensors and a data acquisition system allowing simultaneous spatial electrochemical impedance spectra (EIS) measurements. It was determined that an increase in back pressure for the tested serpentine flow field design results in an improvement of the cell performance and uneven improvement of individual segments’ performance. In general, the performance and the overpotentials become more uniform downstream with an increase in the back pressure due to a decrease in activation and mass transfer losses. Spatial EIS data for the PEMFC operated at different back pressures support the overpotential analysis. Hydrogen stoichiometry variations do not affect the performance of the cell or the individual segments at low current density because there is no significant hydrogen concentration gradient in the flow field. However, at high current densities a reduction in hydrogen stoichiometry produces a slight decrease in performance for inlet segments while outlet segments showed a noticeable performance loss. The decrease in performance is attributed to an increase in mass transfer losses due to nitrogen diffusion from the cathode to the anode. This effect becomes more pronounced for the outlet segments due to a downstream nitrogen accumulation. Under high current density conditions, the cell is locally fuel starved even with a high fuel stoichiometry creating conditions leading to cell degradation by carbon corrosion. More importantly, this local degradation is masked by the overall cell performance which remains largely unaffected.  相似文献   
140.
The biggest issue that must be addressed in promoting widespread use of fuel cell vehicles (FCVs) is to reduce the cost of the fuel cell system. Especially, it is of vital importance to reduce platinum (Pt) loading of catalyst layers (CLs) in the membrane electrode assembly (MEA) of a proton exchange membrane fuel cell (PEMFC). In order to lower the Pt loading of the MEA, mass transport of reactants related to the performance in high current density should be enhanced significantly as well as kinetics of the catalyst, which can result in the better Pt utilization and effectiveness. In this study, we summarized our analytical approach and methods for reduction of Pt loading in CLs. Microstructure, mass transport properties of the reactants, and their relation in CLs were elucidated by applying experimental analyses and computational methods. A simple CL model for IV performance prediction was then established, where experimentally elucidated parameters of the microstructure and the properties in CLs were taken into account. Finally, we revealed the impact of lowering the Pt loading on the transport properties, polarization, and the IV performance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号