全文获取类型
收费全文 | 673篇 |
免费 | 1篇 |
国内免费 | 12篇 |
专业分类
电工技术 | 3篇 |
综合类 | 5篇 |
化学工业 | 258篇 |
金属工艺 | 8篇 |
机械仪表 | 4篇 |
建筑科学 | 8篇 |
矿业工程 | 4篇 |
能源动力 | 220篇 |
轻工业 | 2篇 |
水利工程 | 2篇 |
石油天然气 | 6篇 |
无线电 | 28篇 |
一般工业技术 | 129篇 |
冶金工业 | 7篇 |
自动化技术 | 2篇 |
出版年
2024年 | 3篇 |
2023年 | 20篇 |
2022年 | 59篇 |
2021年 | 45篇 |
2020年 | 46篇 |
2019年 | 49篇 |
2018年 | 30篇 |
2017年 | 29篇 |
2016年 | 21篇 |
2015年 | 18篇 |
2014年 | 48篇 |
2013年 | 38篇 |
2012年 | 22篇 |
2011年 | 42篇 |
2010年 | 30篇 |
2009年 | 37篇 |
2008年 | 36篇 |
2007年 | 26篇 |
2006年 | 25篇 |
2005年 | 8篇 |
2004年 | 11篇 |
2003年 | 14篇 |
2002年 | 6篇 |
2001年 | 9篇 |
2000年 | 3篇 |
1999年 | 3篇 |
1998年 | 4篇 |
1997年 | 3篇 |
1990年 | 1篇 |
排序方式: 共有686条查询结果,搜索用时 15 毫秒
71.
《International Journal of Hydrogen Energy》2022,47(4):2279-2292
A new catalyst for both water reduction and oxidation, based on an infinite chain, {[Ni(tn)2]3 [Fe(CN)4 (μ-CN)2]2}n, is formed by the reaction of NiCl2, 1,3-propanediamine (tn) and K3 [Fe(CN)6]. {[Ni(tn)2]3 [Fe(CN)4 (μ-CN)2]2}n can electro-catalyze hydrogen evolution from a neutral aqueous buffer (pH 7.0) with a turnover frequency (TOF) of 1561 mol of hydrogen per mole of catalyst per hour (H2/mol catalyst/h) at an overpotential (OP) of 837 mV {[Ni(tn)2]3 [Fe(CN)4 (μ-CN)2]2}n also can electro-catalyze O2 production from water with a TOF of ~45 mol O2 (mol cat)?1s?1 at an OP of 591 mV. Under blue light (λ = 469 nm), together with CdS nanorods (CdS NRs) as a photosensitizer, and ascorbic acid (H2A) as a sacrificial electron donor, {[Ni(tn)2]3 [Fe(CN)4 (μ-CN)2]2}n can photo-catalyze hydrogen generation from an aqueous buffer (pH 4.0) with a turnover number (TON) of 11,450 mol H2 per mole of catalyst (mol of H2 (mol of cat)?1) during 10 h irradiation. The average of apparent quantum yield (AQY) is as high as 40.96% during 10 h irradiation. Studies indicate that {[Ni(tn)2]3 [Fe(CN)4 (μ-CN)2]2}n exists in two forms: a cyano-bridged chain ({[Ni(tn)2]3 [Fe(CN)4 (μ-CN)2]2}n) in solid, and a salt ([Ni(tn)2]3 [Fe(CN)6]2) in aqueous media; Catalytic reaction occurs on the nickel center of [Ni(tn)2]2+, and the introduction of [Fe(CN)6]3- can improve the catalytic efficiency of [Ni(tn)2]2+ for H2 or O2 generation. We hope these findings can afford a new method for the design of catalysts for both water reduction and oxidation. 相似文献
72.
《International Journal of Hydrogen Energy》2023,48(21):7670-7682
The development of photocatalysts with efficient hydrogen evolution activity has been the goal for sustainable hydrogen production. In this work, heterojunction composite photocatalyst is formed by hydrothermal coupling of ZnO and Mn0.2Cd0.8S. Compared with pure ZnO and Mn0.2Cd0.8S, the composite photocatalyst has the ability to provide more abundant active sites and better photogenerated carriers separation efficiency. The optimized composite photocatalyst shows a 9.36-fold increase in hydrogen evolution activity (4297.99 μmol g?1 h?1) compared to Mn0.2Cd0.8S (459.31 μmol g?1 h?1) and exhibits excellent cycling stability. Density functional theory calculations identifies Type-II charge transfer path in the composite photocatalyst, achieving effective separation in space of photogenerated electrons from holes and suppressing recombination within the semiconductor. The results show that the construction of Type-II heterojunction in this work achieves a significant enhancement of the hydrogen evolution activity of the photocatalyst by constructing carrier transport channels at the contact interface of the heterojunction. 相似文献
73.
《International Journal of Hydrogen Energy》2023,48(13):5107-5115
Challenge remains to develop a high activity of photocatalyst for large-scale industrial application in photocatalytic selective conversion of biomass alcohols into the value-added chemicals accompany with H2 evolution in aqueous solution. Herein, ReS2 as high efficiency co-catalyst is utilized to modify the flower-like ZnIn2S4 (ZIS) microspheres to obtain heterojunction composite, result in dramatically enhancements in photocatalytic oxidation of furfural alcohols cooperative with H2 evolution. Further studies show that the optimal catalyst containing 4.08 wt% ReS2 (RZIS-3) realize remarkably generation rates of H2 and furfural at 3092.9 and 2981.1 μmol g?1 h?1, respectively, nearly 12 times faster than that of blank ZnIn2S4. Mechanism studies verify that the migration of the photogenerated carriers from ZnIn2S4 to ReS2 leading to the remarkably photoactivity of the composite. Moreover, the typical photocatalysis not rely on a single model substrate, and high performance of the composite has been identified for the oxidation of other alcohols biomass intermediate to value-added aldehydes/ketones, providing a new insight for design and fabrication of the novel photocatalytic hydrogen evolution systems. 相似文献
74.
《International Journal of Hydrogen Energy》2020,45(38):18946-18960
The present study reports about exploration of a multi-component photocatalytic system comprising of WO3, TiO2 and Fe2O3 with tandem n-n heterojunctions. The ternary WO3/TiO2/Fe2O3 nanocomposite with WO3 nanoparticles over the interfaces of Fe2O3 and TiO2 is synthesized by wet precipitation followed by thermal decomposition. The WO3/TiO2/Fe2O3 nanocomposite has an enhanced photocatalytic performance towards hydrogen generation by water splitting reaction under visible light irradiation, when compared to the Fe2O3/TiO2 system. A band gap of 2.10 eV, favouring visible light absorption was achieved with the distribution of WO3 nanopartcles over the interfaces of Fe2O3 and TiO2. The as prepared WTF heterojunction exhibited a maximum hydrogen production rate of 10.2 mL h−1 for a catalyst loading of 0.025 g mL−1. The enhanced photocatalytic performance is tested in presence of various sacrificial agents and proton source. In both cases, the higher photocatalytic efficiency is attributed to the more visible light harnessing ability and pronounced charge separation owing to the tandem n-n heterojunctions generated between TiO2 with WO3 and TiO2 with Fe2O3 semiconductors and enhancing the lifetime of the photogenerated electron-hole pairs. 相似文献
75.
《International Journal of Hydrogen Energy》2020,45(46):24697-24709
A novel composite has been successfully synthesized in situ via a coprecipitation method about the coupling of Cu2(OH)2CO3 with oxidized carbon nitride (O-g-C3N4) forming Cu2(OH)2CO3/O-g-C3N4 (CuCN) heterojunction structure. The as-prepared composites were characterized by diverse means. The CuCN composite with 3:5 mass ratio of Cu2(OH)2CO3 to O-g-C3N4 (60CuCN) presented an extremely excellent photocatalytic activity. The photocatalytic H2 evolution of 60CuCN was around 23.26 and 44.62 times higher than that of g-C3N4 and Cu2(OH)2CO3, respectively. The photocatalytic degradation malachite green (MG) rate of 60CuCN was up to 91%, which was around 2.2 and 4.8 times as much as that of g-C3N4 and Cu2(OH)2CO3, respectively. These results are mainly attributed to the structure property of O-g-C3N4 and the heterojunction structure of the composite, which could effectively accelerate the separation and transfer rate of photogenerated electrons and holes. The holes (h+) and superoxide radicals (·O2−) played a dominant role in photocatalytic degradation MG reaction. 相似文献
76.
《International Journal of Hydrogen Energy》2020,45(55):30521-30532
Photocatalytic hydrogen (H2) evolution from water is considered as a prospective approach, which can convert inexhaustible solar energy into chemical energy to alleviate energy crisis and environmental problems. Herein, the N-defective g-C3N4 with porous structure was firstly synthesized in a sealed crucible by one-step thermal polymerization method. The experimental data showed that the yield of the catalyst was obviously increased under sealing condition. Moreover, the N-defective g-C3N4 prepared from urea precursor under sealed condition reached an optimum photocatalytic H2 production rate of 597.4 μmol/h and an apparent quantum efficiency of 15.6% at wavelength of 420 nm. This enhanced photocatalytic H2 production performance is mainly ascribed to the introduction of N-defects, which not only extended of the visible light absorption, but also acted as the electron trap centers to suppress the recombination of the photogenerated electron and hole pairs. This work offers one-step facile strategy for the introduction of N-defects to prepare N-defective g-C3N4 with superior photocatalytic activity, which is also a great substitute for the high-energy consuming and complicated synthetic routes. 相似文献
77.
《International Journal of Hydrogen Energy》2020,45(20):11502-11511
Perovskite type materials have high potential photocatalytic application towards both hydrogen energy generation and organic dye degradation due to their high stability and good reusability. Here, it is the first analysis of photocatalytic degradation of RhB and hydrogen energy evolution under visible light over MoS2/LaFeO3 nanocomposite. The physicochemical properties of the materials were characterized using a range of techniques such as XRD, TEM, XPS, FTIR, PL, photocurrent, etc. The optical properties of the nanocomposite show good absorption in UV-Vis spectra as compared to the bare LaFeO3. In this study, MoS2/LaFeO3 nanocomposite was synthesized through single step in situ hydrothermal processes with a narrow bandgap, enhanced photocatalytic application under visible light. This novel MoS2/LaFeO3 nanocomposite is an efficient and promising photocatalyst for both hydrogen energy evolution and organic dye degradation. 相似文献
78.
Cheap and efficient photocatalysts were fabricated by simply mixing TiO2 nanoparticles (NPs) and CuO NPs. The two NPs combined with each other to form TiO2/CuO mixture in an aqueous solution due to the opposite surface charge. The TiO2/CuO mixture exhibited photocatalytic hydrogen production rate of up to 8.23 mmol h−1 g−1 under Xe lamp irradiation when the weight ratio of P25 to CuO was optimized to 10. Although the conduction band edge position of CuO NPs is more positive than normal hydrogen electrode, the TiO2/CuO mixture exhibited good photocatalytic hydrogen production performance because of the inter-particle charge transfer between the two NPs. The detailed mechanism of the photocatalytic hydrogen production is discussed. This mixing method does not require a complicated chemical process and allows mass production of the photocatalysts. 相似文献
79.
Sara Amouzad Mehdi Khosravi Niaz Monadi Behzad Haghighi Suleyman I. Allakhverdiev Mohammad Mahdi Najafpour 《International Journal of Hydrogen Energy》2021,46(37):19433-19445
In this study, the effect of potassium hydroxide concentration in anodization bath, anodization time, and calcination temperature on the photo-electrochemical behavior of metallic titanium/mixed phase titanium oxide is investigated. Further, the phase structure of a titanium oxide photocatalyst prepared on a titanium electrode through a high-voltage anodization method is examined. The study exploits photo-electrochemical, Fourier transform infrared spectroscopy attenuated total reflectance (FTIR–ATR), X-ray diffraction, and Raman spectroscopic methods to obtain better insights into the mechanism of mixed-phase titanium oxide formation. In this regard, the photo-electrochemical properties of the photocatalysts prepared in single excitation energy, violet light (410 nm), were investigated. The anodization time and the potassium hydroxide concentration in the anodization bath have significant effects on the photo-electrochemical properties of the photocatalysts. The experiments show that the effect of potassium hydroxide concentration is a function of the anodization potential applied, demonstrating different patterns as the anodization potential changes. Furthermore, FTIR-ATR, X-ray diffraction, and Raman spectroscopic studies reveal that the extended anodization times decrease the population of OH-containing groups, leading to lower photo-electrochemical performance. On the other hand, the formation of anatase phases becomes more favorable only in the extended anodization times before application of the calcination process. Additionally, the calcination temperature has a significant impact on the anatase to rutile ratio. Finally, increasing potassium hydroxide concentration leads to the formation of an amorphous titanium oxide layer. It can be concluded that the obtained information might have a significant impact on the preparation of titanium oxide and other metal oxide photocatalysts through the high voltage anodization process. 相似文献
80.
《International Journal of Hydrogen Energy》2019,44(8):4102-4113
The construction of a high-performance g-C3N4 photocatalyst through a facile and green synthesis method remains a great challenge for H2 production and organic pollutants degradation. In this work, we developed a nano-layer structured g-C3N4 (NL-CN) photocatalyst with a 230 m2/g surface area via the thermal polymerization method using melaminium dinitrate (MDN), which is one of the more energetic materials, as the precursor. The energy coming from the drastic decomposition of nitrate anions in MDN caused the thick layers of bulk CN to be exfoliated to produce many much-thinner nano-layers when at 500 °C for 2 h, which obviously elevated the surface area of the g-C3N4. The resultant NL-CN displays a superior visible-light H2-generation and rhodamine B (RhB) photodegradation efficiency (λ > 420 nm) compared to those of bulk g-C3N4 (CN) prepared through heating melamine because of the nano-layered structures, which lead to higher specific surface areas, a rapid charge transfer efficiency and a higher redox potential. These results demonstrate that the utilization of MDN as a starting material provides a new opportunity for the facile and green synthesis of high-efficiency nanostructured g-C3N4 photocatalysts with lower energy consumption and environmental pollution levels. 相似文献