首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   357篇
  免费   0篇
  国内免费   1篇
电工技术   6篇
综合类   2篇
化学工业   20篇
金属工艺   4篇
机械仪表   1篇
建筑科学   7篇
能源动力   233篇
石油天然气   1篇
无线电   26篇
一般工业技术   54篇
冶金工业   4篇
  2023年   2篇
  2022年   4篇
  2021年   6篇
  2020年   5篇
  2019年   4篇
  2018年   5篇
  2017年   8篇
  2016年   9篇
  2015年   6篇
  2014年   13篇
  2013年   28篇
  2012年   18篇
  2011年   47篇
  2010年   27篇
  2009年   38篇
  2008年   14篇
  2007年   23篇
  2006年   15篇
  2005年   7篇
  2004年   11篇
  2003年   10篇
  2002年   5篇
  2001年   10篇
  2000年   8篇
  1999年   6篇
  1998年   11篇
  1997年   10篇
  1996年   3篇
  1994年   1篇
  1987年   1篇
  1984年   1篇
  1982年   1篇
  1976年   1篇
排序方式: 共有358条查询结果,搜索用时 31 毫秒
61.
The Adaptive Solar Facade (ASF) is a modular, highly integrated dynamic building facade.The energetic behavior as well as the architectural expression of the facade can be controlled with high spatio-temporal resolution through individually addressable modules. We present the general design process, the current mechanical design, and simulation results on photovoltaic power production and building energy consumption. We introduce the controller concept and show results on solar tracking as well as user interaction. Lastly, we present our current and planned prototypes.  相似文献   
62.
By analyzing CdTe/CdS devices fabricated by vacuum evaporation, a self consistent picture of the effects of processing on the evolution of CdTe cells is developed which can be applied to other fabrication methods. In fabricating CdTe/CdS solar cells by evaporation, a 400°C CdCI2 heat treatment is used which recrystallizes the CdTe and interdiffuses the CdS and CdTe layers. The interdiffuson can change the bandgap of both the CdTe and CdS which modifies the spectral response of the solar cell. After this heat treatment a contacting/doping procedure is used which converts the CdTe conductivity to p-type by diffusion from Cu from the contact. Finally, the cell is treated with Br2CH3,OH which improves both Voc and FF. Analogous process steps are used in most fabrication processes for CdTe/CdS solar cells.  相似文献   
63.
Nanotechnology is generating a lot of attention these days and therefore building great expectations not only in the academic community but also among investors, the governments, and industry. Its unique capability to fabricate new structures at atomic scale has already produced novel materials and devices with great potential applications in a wide number of fields. Among them, significant breakthroughs are especially required in the energy sector that will allow us to maintain our increasing appetite for energy, which increases both with the number of people that join the developed economies and with our demand per capita. This needs to be done in a way that includes the environment in the wealth production equation as we gather more evidences of the human impact on the climate, biodiversity and quality of the air, water and soil. This review article does not cover in detail all the specific contributions from nanotechnology to the various sustainable energies, but in a broader way, it collects the most recent advances of nanotechnology to sustainable energy production, storage and use. For this review paper, solar, hydrogen and new generation batteries and supercapacitors are described as the most significant examples of the contributions of nanotechnology in the energy sector. The aim of this review article is to present some significant contributions from many research groups who are mainly unconnected and are working from different viewpoints, to find solutions to one of the great challenges of our time, i.e., the production and use of energy, without compromising our environment, from one of the most exciting and multidisciplinary fields, nanotechnology.  相似文献   
64.
To ensure photovoltaics become a major sustainable player in a competitive power-generation market, they must provide abundant, affordable electricity, with environmental impacts drastically lower than those from conventional power generation. The recent reduction in the cost of 2nd generation thin-film PV is remarkable, meeting the production milestone of $1 per watt in the fourth quarter of 2008. This achievement holds great promise for the future. However, the questions remaining are whether the expense of PV modules can be lowered further, and if there are resource- and environmental-impact constraints to growth. I examine the potential of thin-films in a prospective life-cycle analysis, focusing on direct costs, resource availability, and environmental impacts. These three aspects are closely related; developing thinner solar cells and recycling spent modules will become increasingly important in resolving cost, resource, and environmental constraints to large scales of sustainable growth.  相似文献   
65.
A hybrid system, composed of a photovoltaic (PV) module and a solar thermal collector is constructed and tested for energy collection at a geographic location of Cyprus. Normally, it is required to install a PV system occupying an area of about 10 m2 in order to produce electrical energy; 7 kWh/day, required by a typical household. In this experimental study, we used only two PV modules of area approximately 0.6 m2 (i.e., 1.3×0.47 m2) each. PV modules absorb a considerable amount of solar radiation that generate undesirable heat. This thermal energy, however, may be utilized in water pre-heating applications. The proposed hybrid system produces about 2.8 kWh thermal energy daily. Various attachments that are placed over the hybrid modules lead to a total of 11.5% loss in electrical energy generation. This loss, however, represents only 1% of the 7 kWh energy that is consumed by a typical household in northern Cyprus. The pay-back period for the modification is less than 2 years. The low investment cost and the relatively short pay-back period make this hybrid system economically attractive.  相似文献   
66.
Radio frequency (13.56 MHz) O2 plasmas were used to modify the surface of mesoporous and compact TiO2 films. The effects of substrate location in the plasma, applied rf power, and plasma mode (pulsed or continuous wave) were explored. X-ray photoelectron spectroscopy, contact angle measurements, and scanning electron microscopy were used to characterize changes to the TiO2 films. For mesoporous materials, O2 plasma treatment was found to increase oxygen content in the films, but Si content increased with applied rf power as a result of sputtering and redeposition of Si species from the reactor walls. XPS depth profiling using ion sputtering as well as O2 plasma treatment of dyed materials revealed that Si was deposited throughout the mesoporous network, not as a surface SiO2 layer. Pulsing the plasma with pulse duty cycles < 40% resulted in the elimination of Si and a reduction of damage in the modified films.  相似文献   
67.
A simple solution-based approach for depositing CIGS (Cu-In-Ga-Se/S) absorber layers is discussed, with an emphasis on film characterization, interfacial properties and integration into photovoltaic devices. The process involves incorporating all metal and chalcogenide components into a single hydrazine-based solution, spin coating a precursor film, and heat treating in an inert atmosphere, to form the desired CIGS film with up to micron-scaled film thickness and grain size. PV devices (glass/Mo/CIGS/CdS/i-ZnO/ITO) employing the spin-coated CIGS and using processing temperatures below 500 °C have yielded power conversion efficiencies of up to 10% (AM 1.5 illumination), without the need for a post-CIGS-deposition treatment in a gaseous Se source or a cyanide-based bath etch. Short-duration low-temperature (T < 200 °C) oxygen treatment of completed devices is shown to have a positive impact on the performance of initially underperforming cells, thereby enabling better performance in devices prepared at temperatures below 500 °C.  相似文献   
68.
An electrodeposition-annealing route to films of the promising p-type absorber material Cu2ZnSnS4 (CZTS) using layered metal precursors is studied. The dependence of device performance on composition is investigated, and it is shown that a considerable Cu-deficiency is desirable to produce effective material, as measured by photoelectrochemical measurements employing the Eu3+/2+ redox couple. The differing effects of using elemental sulphur and H2S as sulphur sources during annealing are also studied, and it is demonstrated that H2S annealing results in films with improved crystallinity.  相似文献   
69.
Andreas Poullikkas   《Energy Policy》2009,37(9):3673-3680
In this work a feasibility study is carried out in order to investigate whether the installation of large photovoltaic (PV) parks in Cyprus, in the absence of relevant feed-in tariff or other measures, is economically feasible. The study takes into account the available solar potential of the island of Cyprus as well as all available data concerning current renewable energy sources (RES) policy of the Cyprus Government and the current RES electricity purchasing tariff from Electricity Authority of Cyprus. In order to identify the least-cost feasible option for the installation of 1 MW PV park a parametric cost–benefit analysis is carried out by varying parameters such as PV park orientation, PV park capital investment, carbon dioxide emission trading system price, etc. For all above cases the electricity unit cost or benefit before tax, as well as after-tax cash flow, net present value, internal rate of return and payback period are calculated. The results indicate that capital expenditure of the PV park is a critical parameter for the viability of the project when no feed-in tariff is available.  相似文献   
70.
The idea of combining photovoltaic and solar thermal collectors (PVT collectors) to provide electrical and heat energy is an area that has, until recently, received only limited attention. Although PVTs are not as prevalent as solar thermal systems, the integration of photovoltaic and solar thermal collectors into the walls or roofing structure of a building could provide greater opportunity for the use of renewable solar energy technologies. In this study, the design of a novel building integrated photovoltaic/thermal (BIPVT) solar collector was theoretically analysed through the use of a modified Hottel-Whillier model and was validated with experimental data from testing on a prototype BIPVT collector.The results showed that key design parameters such as the fin efficiency, the thermal conductivity between the PV cells and their supporting structure, and the lamination method had a significant influence on both the electrical and thermal efficiency of the BIPVT. Furthermore, it was shown that the BIPVT could be made of lower cost materials, such as pre-coated colour steel, without significant decreases in efficiency.Finally, it was shown that by integrating the BIPVT into the building rather than onto the building could result in a lower cost system. This was illustrated by the finding that insulating the rear of the BIPVT may be unnecessary when it is integrated into a roof above an enclosed air filled attic, as this air space acts as a passive insulating barrier.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号