首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31152篇
  免费   2630篇
  国内免费   807篇
电工技术   1254篇
综合类   1021篇
化学工业   8401篇
金属工艺   663篇
机械仪表   973篇
建筑科学   1547篇
矿业工程   85篇
能源动力   7342篇
轻工业   1445篇
水利工程   90篇
石油天然气   409篇
武器工业   28篇
无线电   4702篇
一般工业技术   5433篇
冶金工业   266篇
原子能技术   264篇
自动化技术   666篇
  2024年   84篇
  2023年   778篇
  2022年   1686篇
  2021年   1992篇
  2020年   1280篇
  2019年   1102篇
  2018年   968篇
  2017年   1292篇
  2016年   1321篇
  2015年   1436篇
  2014年   2092篇
  2013年   2116篇
  2012年   1975篇
  2011年   2794篇
  2010年   1890篇
  2009年   1729篇
  2008年   1509篇
  2007年   1535篇
  2006年   1258篇
  2005年   901篇
  2004年   753篇
  2003年   644篇
  2002年   584篇
  2001年   447篇
  2000年   373篇
  1999年   266篇
  1998年   346篇
  1997年   237篇
  1996年   218篇
  1995年   137篇
  1994年   169篇
  1993年   121篇
  1992年   88篇
  1991年   64篇
  1990年   58篇
  1989年   46篇
  1988年   42篇
  1987年   38篇
  1986年   28篇
  1985年   39篇
  1984年   35篇
  1983年   30篇
  1982年   31篇
  1981年   7篇
  1980年   14篇
  1979年   7篇
  1978年   7篇
  1977年   6篇
  1975年   3篇
  1951年   11篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
21.
22.
In this work we conceived a model of a multilayer solar cell composed by four layers of opposite conductivities: an n-type 6H-SiC used as a frontal layer to absorb high energy photons (energy gap equals 2.9 eV), a p-type Si layer, an n-type Si layer and a p-type SiGe back layer to absorb low energy photons (Si0.8Ge0.2 with an energy gap equal to 0.8 eV). The impurity concentration in every layer of the model is taken equal to 1017 cm−3 to ensure abrupt junctions inside the cell. The optical properties of the separate layers have been fitted and tabulated to be used for thin films devices numerical simulation. We developed the equations giving the minority carrier concentration and the photocurrent density in each abscissa of the model. We used Matlab software to simulate and optimize the layers thicknesses to achieve the maximum photocurrent generated under AM0 solar spectrum. The results of simulation showed that the optimized structure could deliver, assuming 105 cm/s surface recombination velocity, a photocurrent density of more than 53 mA/cm2, which represents 88.3% of the ideal photocurrent (59.99 mA/cm2) that can be generated under AM0 solar spectrum.  相似文献   
23.
The cover image illustrates the dual photovoltaic and electroluminescence function of a single‐layer device based on a thienylenevinylene–triphenylamine with internal charge transfer (ICT), as reported by Cravino, Roncali, and co‐workers on p. 3033. The material forms an organic glass with isotropic electronic properties while ICT leads simultaneously to an extension of the photoresponse to the red and to an increase of the open circuit voltage. The use of an additional layer of C60 further improves the photovoltaic. Images of the sun and moon courtesy NASA/JPL–Caltech.  相似文献   
24.
The performance of bulk‐heterojunction solar cells based on a phase‐separated mixture of donor and acceptor materials is known to be critically dependent on the morphology of the active layer. Here we use a combination of techniques to resolve the morphology of spin cast films of poly(p‐phenylene vinylene)/methanofullerene blends in three dimensions on a nanometer scale and relate the results to the performance of the corresponding solar cells. Atomic force microscopy (AFM), transmission electron microscopy (TEM), and depth profiling using dynamic time‐of‐flight secondary ion mass spectrometry (TOF‐SIMS) clearly show that for the two materials used in this study, 1‐(3‐methoxycarbonyl)propyl‐1‐phenyl‐[6,6]‐methanofullerene (PCBM) and poly[2‐methoxy‐5‐(3′,7′‐dimethyloctyloxy)‐1,4‐phenylene vinylene] (MDMO‐PPV), phase separation is not observed up to 50 wt.‐% PCBM. Nanoscale phase separation throughout the film sets in for concentrations of more than 67 wt.‐% PCBM, to give domains of rather pure PCBM in a homogenous matrix of 50:50 wt.‐% MDMO‐PPV/PCBM. Electrical characterization, under illumination and in the dark, of the corresponding photovoltaic devices revealed a strong increase of power conversion efficiency when the phase‐separated network develops, with a sharp increase of the photocurrent and fill factor between 50 and 67 wt.‐% PCBM. As the phase separation sets in, enhanced electron transport and a reduction of bimolecular charge recombination provide the conditions for improved performance. The results are interpreted in terms of a model that proposes a hierarchical build up of two cooperative interpenetrating networks at different length scales.  相似文献   
25.
BACKGROUND: Two peat biofilters were used for the removal of toluene from air for one year. One biofilter was fed with pure toluene and the other received 1:1 (by weight) ethyl acetate:toluene mixture. RESULTS: The biofilters were operated under continuous loading: the toluene inlet load (IL) at which 80% removal occurred was 116 g m?3 h?1 at 57 s gas residence time. Maximum elimination capacity of 360 g m?3 h?1 was obtained at an IL of 745 g m?3 h?1. The elimination of toluene was inhibited by the presence of ethyl acetate. Intermittent loading, with pollutants supplied for 16 h/day, 5 days/week, did not significantly affect the removal efficiency (RE). Biomass was fully activated in 2 h after night closures, but 6 h were required to recover RE after weekend closures. Live cell density remained relatively constant over the operational period, while the dead cell fraction increased. Finally, a 15 day starvation period was applied and operation then re‐started. Performance was restored with similar re‐acclimatization period to that after weekend closures, and a reduction in dead cell fraction was observed. CONCLUSION: This study demonstrates the capacity of the system to handle intermittent loading conditions that are common in industrial practices, including long‐term starvation. Copyright © 2008 Society of Chemical Industry  相似文献   
26.
InAs self-assembled quantum dots (SA-QDs) were incorporated into GaAlAs/GaAs heterostructure for solar cell applications. The structure was fabricated by molecular beam epitaxy on p-GaAs substrate. After the growth of GaAs buffer layer, multi-stacked InAs QDs were grown by self-assembly with a slow growth rate of 0.01 ML/s, which provides high dot quality and large dot size. Then, the structure was capped with n-GaAs and wide band gap n-GaAlAs was introduced. One, two or three stacks of QDs were sandwiched in the p–n heterojunction. The contribution of QDs in solar cell hetero-structure is the quantized nature and a high density of quantized states. IV characterization was conducted in the dark and under AM1 illumination with 100 mW/cm2 light power density to confirm the solar cell performance. Photocurrent from the QDs was confirmed by spectral response measurement using a filtered light source (1.1-μm wavelength) and a tungsten halogen lamp with monochromator with standard lock-in technique. These experimental results indicate that QDs could be an effective part of solar cell heterostructure. A typical IV characteristic of this yet-to-be-optimized solar cell, with an active area of 7.25 mm2, shows an open circuit voltage Voc of 0.7 V, a short circuit current Isc of 3.7 mA, and a fill factor FF of 0.69, leading to an efficiency η of 24.6% (active area).  相似文献   
27.
In a recent discovery, coaxial electrospinning was explored to encapsulate living organisms within a continuous bio‐polymeric microthread from which active biological scaffolds were fabricated (Townsend‐Nicholson and Jayasinghe, Biomacromolecules 2006, 7, 3364). The cells were demonstrated to have gone through all expected cellular activity without their viability being compromised. These biologically active threads and scaffolds have direct and tremendous applicability from regenerative to therapeutic medicine. Currently these post‐processed cells as composite threads and scaffolds are being investigated in‐depth at a cellular level to establish if the processing methodology has any affect on the cellular make‐up. We now demonstrate a competing non‐electric field driven approach for fabricating composite threads and scaffolds influenced only by a differential pressure. We refer to this novel composite thread to scaffold fabrication methodology as coaxial aerodynamically assisted bio‐threading (CAABT). Our investigations firstly, demonstrate that this technique can process handle living organisms without biologically perturbing them in anyway. Secondly the process is elucidated as possessing the ability to form composite active threads from which biologically viable scaffolds are formed. Finally our study employs florescent activated cell sorting (FACScan), a method by which the cellular dynamics and viability are quantified on control and threaded cellular samples at two prescribed time points. In parallel with FACScan, optical comparison of cellular morphology at three time points within a period of three weeks is carried out to photographically observe any changes in the post‐processed cellular phenotype. Our developmental investigations into this novel aerodynamically assisted threading methodology has unearthed a unique biomicrofabrication approach, which joins cell electrospinning in the cell threading to scaffold fabrication endeavor. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
28.
B.S. Kirkland 《Polymer》2008,49(2):507-524
Poly(n-alkyl acrylate)s can have side chains that crystallize independently of the main chain; side-chain length can thus be used as a tunable parameter to control the gas permeability of membranes. The gas permeation response of poly(n-alkyl acrylate) and poly(m-alkyl acrylate) blends as a function of temperature is reported for varying side-chain lengths, n and m, and blend composition in the semi-crystalline and molten states. Macroscopic homogeneity is observed for a small range of n and m where |n − m| ≤ 2-4 methylene units. Thermal analysis indicates that the blend components crystallize independently of one another; however, crystallization is hindered by the presence of the other component. Permeation responses of the blends investigated in some cases exhibited two distinct permeation jumps or increases at the melting temperature of each component. Blends with continuous permeation responses but higher effective activation energies of permeation (i.e., more thermally responsive) were observed for some blends over the temperature of interest for membranes to be used for modified atmosphere packaging.  相似文献   
29.
A direct ethanol fuel cell (DEFC), which is less prone to ethanol crossover, is reported. The cell consists of PtRu/C catalyst as the anode, Nafion® 117 membrane, and Ni–Co–Fe (NCF) composite catalyst as the cathode. The NCF catalyst was synthesized by mixing Ni, Co, and Fe complexes into a polymer matrix (melamine-formaldehyde resins), followed by heating the mixture at 800 °C under inert atmosphere. TEM and EDX experiments suggest that the NCF catalyst has alloy structures of Ni, Co and Fe. The catalytic activity of the NCF catalyst for the oxygen reduction reaction (ORR) was compared with that of commercially available Pt/C (CAP) catalyst at different ethanol concentrations. The decrease in open circuit voltage (Voc) of the DEFC equipped with the NCF catalysts was less than that of CAP catalyst at higher ethanol concentrations. The NCF catalyst was less prone to ethanol oxidation at cathode even when ethanol crossover occurred through the Nafion®117 film, which prevents voltage drop at the cathode. However, the CAP catalyst did oxidize ethanol at the cathode and caused a decrease in voltage at higher ethanol concentrations.  相似文献   
30.
In this work, we provide the evidence of polymer transcrystallinity in the presence of carbon nanotubes (CNTs). The interfacial morphology of carbon nanotube fiber-polypropylene matrix is investigated by means of polarized optical microscopy (POM), wide-angle X-ray diffraction (WAXD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The supramolecular microstructures of polypropylene transcrystals induced by the nanotube fiber are observed in the range of isothermal crystallization temperatures from 118 °C to 132 °C. The dynamic process of transcrystallization is analyzed by using the theory of heterogeneous nucleation. Microstructure analysis shows that the nanotubes can nucleate the growth of both α- and γ-transcrystal, and α-transcrystals dominate the overall interfacial morphology. Close to the nanotube fiber surface, a cross-hatched lamellar microstructure composed of mother lamellae and daughter lamellae is observed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号