全文获取类型
收费全文 | 72篇 |
免费 | 0篇 |
专业分类
电工技术 | 1篇 |
综合类 | 1篇 |
金属工艺 | 3篇 |
机械仪表 | 3篇 |
能源动力 | 43篇 |
石油天然气 | 1篇 |
武器工业 | 1篇 |
一般工业技术 | 1篇 |
原子能技术 | 14篇 |
自动化技术 | 4篇 |
出版年
2023年 | 3篇 |
2022年 | 8篇 |
2021年 | 8篇 |
2020年 | 4篇 |
2019年 | 4篇 |
2018年 | 1篇 |
2017年 | 2篇 |
2015年 | 4篇 |
2014年 | 5篇 |
2013年 | 2篇 |
2012年 | 1篇 |
2011年 | 2篇 |
2010年 | 2篇 |
2009年 | 3篇 |
2008年 | 4篇 |
2007年 | 7篇 |
2006年 | 2篇 |
2005年 | 2篇 |
2004年 | 1篇 |
2003年 | 1篇 |
2002年 | 1篇 |
2000年 | 2篇 |
1997年 | 1篇 |
1994年 | 1篇 |
1989年 | 1篇 |
排序方式: 共有72条查询结果,搜索用时 15 毫秒
51.
52.
53.
使用计算机对核反应堆换料过程进行监测,有利于增强换料运行的安全性和可靠性.核反应堆换料监控系统采用组态软件进行开发.由于系统较为复杂,需要记录大量数据,所以需要强大的数据库支持.本文对该系统需记录的数据进行了分析并给出了数据时时记录的解决方案. 相似文献
54.
《International Journal of Hydrogen Energy》2021,46(57):29391-29399
Cryo-compressed hydrogen storage has excellent volume and mass hydrogen storage density, which is the most likely way to meet the storage requirements proposed by United States Department of Energy(DOE). This paper contributes to propose and analyze a new cryogenic compressed hydrogen refueling station. The new type of low temperature and high-pressure hydrogenation station system can effectively reduce the problems such as too high liquefaction work when using liquid hydrogen as the gas source, the need to heat and regenerate to release hydrogen, and the damage of thermal stress on the storage tank during the filling process, so as to reduce the release of hydrogen and ensure the non-destructive filling of hydrogen. This paper focuses on the study of precooling process in filling. By establishing a heat transfer model, the dynamic trend of tank temperature with time in the precooling process of low-temperature and high-pressure hydrogen storage tank under constant pressure is studied. Two analysis methods are used to provide theoretical basis for the selection of inlet diameter of hydrogen storage tank. Through comparative analysis of the advantages and disadvantages of the two analysis methods, it is concluded that the analysis method of constant mass flow is more suitable for the selection in practical applications. According to it, the recommended diameter of the storage tank at the initial temperature of 300 K, 200 K and 100 K is selected, which are all 15 mm. It is further proved that the calculation method can meet the different storage tank states of hydrogen fuel cell vehicles when selecting the pipe diameter. 相似文献
55.
《International Journal of Hydrogen Energy》2021,46(71):35057-35076
The objective of this study to develop and undertake a comprehensive CFD analysis of an effective state-of-the-art 250 kg/day hydrogen generation unit for an on-site hydrogen refueling station (HRS), an essential part of the infrastructure required for fuel cell vehicles and various aspects of hydrogen mobility. This design consists of twelve reforming tubes and one newly designed metal fiber burner to ensure superior emission standards and performance. Experimental and computational modeling steps are conducted to investigate the effects of various operating conditions, the excess air ratio (EAR) at the burner, the gas hourly space velocity (GHSV), the process gas inlet temperature, and the operating pressure on the hydrogen production rate and thermal efficiency. The results indicate that the performance of the steam methane reforming reactor increased significantly by improving the combustion characteristics and preventing local peak temperatures along the reforming tube. It is shown that EAR should be chosen appropriately to maximize the hydrogen production rate and lifetime operation of the reformer tube. It is found that high inlet process gas temperatures and low operating pressure are beneficial, but these parameters have to be chosen carefully to ensure proper efficiency. Also, a high GHSV shortens the residence time and provides unfavorable heat transfer in the bed, leading to decreased conversion efficiency. Thus, a moderate GHSV should be used. It is shown that heat transfer is an essential factor for obtaining increased hydrogen production. This study addresses the pressing need for the HRS to adopt such a compact system, whose processes can ensure greater hydrogen production rates as well as better durability, reliability, and convenience. 相似文献
56.
《International Journal of Hydrogen Energy》2022,47(55):23471-23481
This study has developed traceable standards for evaluating impurities in hydrogen fuel according to ISO 14687. Impurities in raw H2, including sub μmol/mol levels of CO, CO2, and CH4, were analyzed using multiple detectors while avoiding contamination. The gravimetric standards prepared included mixtures of the following nominal concentrations: 1, 2, 3–5, 8–11, 17–23, and 47–65 μmol/mol for CO2, CH4 and CO, O2, N2, Ar, and He, respectively. The expanded uncertainty ranges were 0.8% for Ar, N2, and He, 1% for CH4 and CO, and 2% for CO2 and O2. These standards were stable, while that for CO varied by only 0.5% during a time span of three years. The prepared standards are useful for evaluating the compliance of H2 fuel in service stations with ISO 14687 quality requirements. 相似文献
57.
《International Journal of Hydrogen Energy》2019,44(33):18496-18504
The focus of this research is on refueling process from a buffer and a cascade storage bank. A thermodynamic analysis is developed to investigate the filling process of fuel transmission from a storage bank to hydrogen cylinder. Refueling Process from Buffer and Cascade Storage Banks is the subject of this research. Filling the hydrogen cylinder to the required final condition is influenced by the volume and pressure of storage bank. For both buffer and cascade storage banks, ambient temperature is also an important parameter that affects the initial condition, the final condition and the refueling process. Comparison of buffer and cascade storage banks showed that refueling time using buffer storage bank is 200 s less than the cascade storage bank. However, the energy required for gas storage is higher in buffer storage system. As shown by the study, reduction in the final temperature of the filling process can be achieved by controlling the ambient temperature, the initial pressure and the fuel charging rate. 相似文献
58.
Tim Brown Lori Smith Schell Shane Stephens-Romero Scott Samuelsen 《International Journal of Hydrogen Energy》2013
A detailed economics model of hydrogen infrastructure in California has been developed and applied to assess several potential fuel cell vehicle deployment rate and hydrogen station technology scenarios. The model accounts for all of the costs in the hydrogen supply chain and specifically examines a network of 68 planned and existing hydrogen stations in terms of economic viability and dispensed hydrogen cost. Results show that (1) current high-pressure gaseous delivery and liquid delivery station technologies can eventually be profitable with relatively low vehicle deployment rates, and (2) the cost per mile for operating fuel cell vehicles can be lower than equivalent gasoline vehicles in both the near and long term. 相似文献
59.
《Fusion Engineering and Design》2014,89(6):793-799
A fusion-fission hybrid reactor (FFHR) with pressure tube blanket has recently been proposed based on an ITER-type tokamak fusion neutron source and the well-developed pressurized water cooling technologies. In this paper, detailed burnup calculations are carried out on an updated blanket. Two different blankets respectively fueled with the spent nuclear fuel (SNF) discharged from light water reactors (LWRs) or natural uranium oxide is investigated. In the first case, a three-batch out-to-in refueling strategy is designed. In the second case, some SNF assemblies are loaded into the blanket to help achieve tritium self-sufficiency. And a three-batch in-to-out refueling strategies is adopted to realize direct use of natural uranium oxide fuel in the blanket. The results show that only about 80 tonnes of SNF or natural uranium are needed every 1500 EFPD (Equivalent Full Power Day) with a 3000 MWth output and tritium self-sufficiency (TBR > 1.15), while the required maximum fusion powers are lower than 500 MW for both the two cases. Based on the proposed refueling strategies, the uranium utilization rate can reach about 4.0%. 相似文献
60.