首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   0篇
  国内免费   2篇
化学工业   3篇
金属工艺   17篇
机械仪表   4篇
轻工业   4篇
无线电   2篇
一般工业技术   6篇
冶金工业   9篇
自动化技术   6篇
  2022年   1篇
  2021年   1篇
  2017年   1篇
  2014年   1篇
  2013年   37篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2007年   7篇
排序方式: 共有51条查询结果,搜索用时 31 毫秒
11.
《钢铁冶炼》2013,40(3):209-213
Abstract

The interaction of liquid steel and an inclined impinging oxygen jet in an electric arc furnace (EAF) is of interest both commercially and scientifically. The bath activity in the EAF may vary from a surface splash ejected to high elevation to intense subsurface mixing. The system is appropriately modelled using water and nitrogen with scaled flowrates. In previous work, the gas/liquid contact was investigated by use of a geometrically similar 1/3rd scale three-dimensional water model. The cavity formed by the jet contacting the liquid surface was characterised by four modal regimes. These regimes were seen to depend on the lance angle, the height of the lance and the jet flowrate. To investigate the evolutionary mechanisms of the cavity regimes, a two-dimensional water model study was undertaken. The two-dimensional water model was a rectangular viewing tank with an inner movable glass wall that allowed a very thin slice of the system to be obtained. The shape of the cavity formed on the water surface was seen clearly along with the expected cavity oscillations. High speed video footage of the two-dimensional system allowed the cavity oscillation to be directly observed. The gas-liquid interaction produced a wave that travelled along the surface of the cavity until it reached the cavity crest where it was torn from the liquid surface and dispersed in a splash. It is the regular progression of the wave's nodes and antinodes along the cavity surface that makes the cavity appear to oscillate. When the wave reaches the crest of the cavity, it will either fall back into the path of the gas jet or be projected as a splash depending on the verticality of the cavity surface. The two-dimensional work, along with the initial three-dimensional investigation, has shown that the troublesome splash in the EAF is caused by how the lance is positioned directionally or azimuthally. By changing the lance angle or height the deleterious splashing of molten metal may be prevented, ameliorated or controlled. The frequency of the wave production was determined from the high speed video footage. The cavity oscillation was found to be a function of the size of the cavity, the inclined height of the lance and the modal regime being produced. Alterations to the flow through the lance had only a moderate effect on the frequency of oscillation indicating that velocity was not the major influential factor.  相似文献   
12.
《钢铁冶炼》2013,40(4):295-299
Abstract

An overview is given of roll developments and experience in the context of hot mills and flat rolled products. After 30 years of slow change, there are now strong productivity and quality incentives driving developments in roll technology. International developments are noted, in particular the acceptance that high speed steel (HSS) rolls must be used to meet current surface finish requirements. The most significant need at present is for an improvement of late stand work rolls.  相似文献   
13.
The variation of the mechanical properties of adhesives with temperature and strain rate is one of the most important factors to consider when designing a bonded joint due to the polymeric nature of adhesives. It is well known that adhesive strength generally shows temperature dependence. Moreover, in many structural applications, the applied loads can be dynamic and the design of the joint requires the knowledge of the high loading rate mechanical behaviour of the adhesive. In this study, the combined effect of the temperature and test speed on the tensile properties of a high temperature epoxy adhesive was investigated. Tensile tests were performed at three different test speeds and various temperatures (room temperature (RT) and high temperatures (100, 125 and 150°C)). The glass transition temperature (T g) of the epoxy adhesive investigated is approximately 155°C. The ultimate tensile stress decreased linearly with temperature (T) while increased logarithmically with the loading rate, which is in the accord with the Airing's molecular activation model.  相似文献   
14.
This paper is intended to supplement one published in 1966 containing a survey of the literature on yarn hairiness, and the review of the literature is brought up-to-date at the time of writing.

A new electronic instrument for measuring yarn hairiness is outlined. This apparatus enables three parameters to be obtained directly and simultaneously, these being hairiness, hair length, and yarn diameter.  相似文献   
15.
The air flow through a test section partially obstructed by a permeable array of wires was measured simultaneously by Hot Wire Anemometry (HWA) and Particle Image Velocimetry. The objective of the study was the assessment of the suitability of HWA for the measurement of flow velocities amid and adjacent to groups of small obstacles. In the present case the obstacles are set in a regular array configuring a highly permeable structure. The probe was placed at three characteristic positions: in the free flow close to the wire array, inside the permeable medium, and at the interface between the permeable structure and the free flow. The measurements were performed with the hot wire operating under natural convection and mixed convection heat transfer, and operating the hot wire at different overheat ratios. Natural convection plumes extending over several permeable volume elements were detected when the hot wire was under natural convection, in some cases reaching velocities up to 60 mm/s downstream from the hot wire position. For low velocity flows, natural convection can be regarded as a flow velocity offset, which becomes negligible at local velocities higher than 0.03 m/s. For higher velocities, in the mixed convection regime, the intrusivity of the HWA probe becomes relevant. Furthermore, the flow in the test section used in the study presents a linear instability that produces velocity fluctuations. Availing ourselves of this phenomenon we verified the dynamic response of the HWA at the lowest velocity where the flow shows periodic fluctuations; for a local mean velocity of (0.131 ± 0.012) m/s the HWA showed a satisfactory dynamic response up to 20 Hz.  相似文献   
16.
Abstract

In the present work, the densification and microstructure of M2 high speed steel powder processed by direct laser sintering method was studied. Test specimens were produced using a 200 W continuous wave CO2 laser beam at different scan rates ranging from 50 to 175 mm s?1. The building process was performed under argon and nitrogen atmospheres in order to evaluate the role of sintering atmosphere. It was found that the sintered density strongly depends on the laser scan rate and thus on the duration time of the laser beam on the surface of the powder particles. Generally, with a decrease in the scan rate higher densification was obtained. However, formation of large cracks and delamination of the sintered layers is feasible at low scan rates. The results also demonstrated that sintering under argon atmosphere yields better densification compared to a nitrogen atmosphere, in particular at higher scan rates. The microstructure of laser sintered parts consisted of large and elongated pores parallel to the building direction. The metal matrix structure was found to be heterogeneous, i.e. carbon rich austenite was formed due to carbon segregation. This structure consisted of fine cellulars or dendrites of martensite and retained austenite. This article describes the influence of manufacturing parameters on the densification of laser sintered M2 high speed steel powder. The microstructural features of the processed parts are also addressed.  相似文献   
17.
An analysis is given from which equations can be derived that relate the variations of twist factor, tension, and yam path through a false-twist friction spindle. The solution of these (differential) equations leads to predictions about the dependence of over-all twist factor and tension ratio on, among other parameters, the ratio of yam speed to spindle speed, the angle of wrap, and the input tension. These are compared with the early experimental results of Arthur and Weller and with more recent results.

The equations also yield the variation of twist factor and tension over the spindle surface and could be used to estimate wear.

The early part of the analysis would have general application in any situation in which a yarn is moving over a surface.  相似文献   
18.
Abstract

A comprehensive survey of high speed weld bead defects is presented with strong emphasis on the formation of humping and undercutting in autogenous and non-autogenous fusion welding processes. Blowhole and overlap weld defects are also discussed. Although experimental results from previous studies are informative, they do not always reveal the physical mechanisms responsible for the formation of these high speed weld bead defects. In addition, these experimental results do not reveal the complex relationships between welding process parameters and the onset of high speed weld bead defects. Various phenomenological models of humping and undercutting have been proposed that were based on observations of events in different regions within the weld pool or the final weld bead profile. The ability of these models to predict the onset of humping or undercutting has not been satisfactorily demonstrated. Furthermore, the proposed formation mechanisms of these high speed weld bead defects are still being questioned. Recent welding techniques and processes have, however, been shown to be very effective in suppressing humping and undercutting by slowing the backward flow of molten metal in the weld pool. This backward flow of molten weld metal may be the principal physical phenomenon responsible for the formation of humping and undercutting during high speed fusion welding.  相似文献   
19.
Abstract

Conventional friction stir welding (FSW) of high strength and high melting point materials, such as steel and titanium, has the disadvantages of a serious tool wear problem and slow welding speed. A new friction stir welding process for such materials called 'electrically enhanced friction stir welding process (EHFSW)' has been suggested and analysed using finite element modelling. The basic idea of EHFSW is that electric current passes from the welding tool into the workpiece through the contact area in the welding region. Thus it results in more localised heating while welding is in progress and is not simply a preheating process. The temperature distribution in the workpiece during the pin plunge stage and the welding stage of the EHFSW process has been determined. The results show that EHFSW can reduce the plunge force significantly with the help of localised electrical heating during the pin plunge stage, which may imply lower tool wear when compared with conventional FSW. At the same time, in the welding stage, the simulation results indicate that the welding speed of the EHFSW process can be at least two times faster than that of the conventional FSW process. Thus, finite element analysis shows that EHFSW is a promising process and could reduce tool wear while improving the welding speed, especially for high melting/O point materials.  相似文献   
20.
Abstract

The Ohno continuous casting process, known as the OCC process, is a heated mould crystallisation process that permits the generation of single crystal or cast products with a unidirectional structure. In this process, solidification takes place at the mould exit. Thus, the understanding of the process parameters is crucial to the successful application of this technology. The present note is aimed at clarifying the often misunderstood factors influencing the casting speed of the process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号