首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82441篇
  免费   7886篇
  国内免费   2646篇
电工技术   4877篇
综合类   6287篇
化学工业   13009篇
金属工艺   8114篇
机械仪表   4492篇
建筑科学   11598篇
矿业工程   2855篇
能源动力   9393篇
轻工业   3967篇
水利工程   2039篇
石油天然气   6680篇
武器工业   443篇
无线电   2207篇
一般工业技术   7347篇
冶金工业   5432篇
原子能技术   1559篇
自动化技术   2674篇
  2024年   311篇
  2023年   910篇
  2022年   2109篇
  2021年   2331篇
  2020年   2502篇
  2019年   1926篇
  2018年   1761篇
  2017年   2155篇
  2016年   2603篇
  2015年   2664篇
  2014年   5161篇
  2013年   4928篇
  2012年   5861篇
  2011年   6143篇
  2010年   4565篇
  2009年   4743篇
  2008年   3692篇
  2007年   5085篇
  2006年   4784篇
  2005年   4178篇
  2004年   3742篇
  2003年   3350篇
  2002年   3200篇
  2001年   2663篇
  2000年   2171篇
  1999年   1731篇
  1998年   1383篇
  1997年   1228篇
  1996年   1059篇
  1995年   904篇
  1994年   694篇
  1993年   512篇
  1992年   456篇
  1991年   315篇
  1990年   218篇
  1989年   239篇
  1988年   136篇
  1987年   104篇
  1986年   74篇
  1985年   46篇
  1984年   80篇
  1983年   60篇
  1982年   63篇
  1981年   25篇
  1980年   15篇
  1979年   15篇
  1978年   4篇
  1975年   3篇
  1959年   31篇
  1951年   21篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
Bismuth doped La2-xBixNiO4+δ (x = 0, 0.02 and 0.04) oxides are investigated as SOFC cathodes. The effects of Bi doping on the phase structure, thermal expansion, electrical conduction behavior as well as electrochemical performance are studied. All the samples exist as a tetragonal Ruddlesden-Popper structure. Bi-doped LBNO-0.02 and LBNO-0.04 have good chemical and thermal compatibility with LSGM electrolyte. The average TEC over 20–900°С was 13.4 × 10?6 and 14.2 × 10?6 K?1 for LBNO-0.02 and LBNO-0.04, respectively. The electrical conductivity was decreasing with the rise of Bi doping content. EIS measurement indicates Bi doping can decrease the ASR values. At 750 °C, the obtained ASR for LBNO-0.04 is 0.18 Ωcm2, which is 56% lower than that of the sample without Bi doping, suggesting Bi doping is beneficial to the electrochemical catalytic activity of LBNO cathodes.  相似文献   
12.
We deal with the mathematical model of the incremental degradation of the internal coating (e.g. a polymeric material) of a metallic pipe in which a fluid flows relatively fast. The fluid drags solid impurities so that longitudinal scratches, inaccessible to any direct inspection procedure, are produced on the coating. Time evolution of this kind of defects can be reconstructed from the knowledge of a sequence of temperature maps of the external surface. The time-varying orthogonal section of this damaged interface is determined as a function of time and polar angle through the identification of a suitable effective heat transfer coefficient by means of Thin Plate Approximation.  相似文献   
13.
A microchannel heat exchanger with a triangular wave and symmetrical triangular wave structure was proposed in this paper. In addition, a new N-type microchannel heat exchanger was developed to balance the heat transfer performance and pressure drop. The relationship between different configurations of the N structure of the microchannel and the heat transfer performance was analyzed. The results showed that, at a high inlet flow rate, the symmetrical triangular wave microchannel had the best heat transfer performance, followed by the triangular wave microchannel and the straight channel. At the same flow rate, the degree of disturbance of the fluid was highest in the symmetrical N-structure microchannel, and an excellent heat transfer effect was observed.  相似文献   
14.
This study addresses the thermo‐diffusion and the diffusion‐thermo phenomena in a semi‐infinite absorbent channel whose walls are contracting/expanding, with heat source/sink effects. The governing partial differential equations with suitable boundary conditions are transformed to a system of dimensionless ordinary differential equations. An analytic solution of the problem has been found using a technique called homotopy analysis method (HAM). HAM gives consistently valid answers to the problem over an extensive variety of parameters and also provides better accuracy. To validate the analytical results, a comparison has been presented with a numerical solution calculated by using the parallel shooting method. The effects of dimensionless parameters, that is, deformation parameter, Reynolds number, Soret and Dufour numbers, and heat source/sink parameter on the expressions of velocity, temperature, and concentration profiles are analyzed graphically to understand the physics of the deformable channel. It has been noted that the velocity across the channel is higher for the expanding channel, as compared to that for the contracting channel. Also the Soret and Dufour number increases the temperature of the fluid, and decreases the concentration. The temperature profile has an increasing behavior in the case of heat source, and a decreasing behavior in the case of heat sink.  相似文献   
15.
16.
Bottom pour ladles with stopper rod systems are commonly used in the metal casting industry. However, stopper rod bottom-pouring systems have not yet been developed for the lower thermal masses of alloys typically used in the investment casting industry. Large thermal masses used with bottom pour systems are typically limited for ladles larger than 700 kg and to certain alloys with higher fluidity and longer solidification time like cast iron, aluminum alloys etc. In this study, bottom pour ladle designs and low thermal mass refractory systems have been developed and evaluated in production investment foundry trials with 300 kg pouring ladle. The ladles system and pouring practices used will be described along with the results from the pouring trials for SS304 that represents typical alloys used in Investment casting industries. Optimization of the variables used in an experimentation using Genetic algorithm is also explained.  相似文献   
17.
With increasing consumption of natural gas (NG), small NG reservoirs, such as coalbed methane and oil field associated gas, have recently drawn significant attention. Owing to their special characteristics (e.g., scattered distribution and small output), small-scale NG liquefiers are highly required. Similarly, the mixed refrigerant cycle (MRC) is suitable for small-scale liquefaction systems due to its moderate complexity and power consumption. In consideration of the above, this paper reviews the development of mobile miniature NG liquefiers in Technical Institute of Physics and Chemistry (TIPC), China. To effectively liquefy the scattered NG and overcome the drawbacks of existing technologies, three main improvements, i.e., low-pressure MRC process driven by oil-lubricated screw compressor, compact cold box with the new designed heat exchangers, and standardized equipment manufacturing and integrated process technology have been made. The development pattern of “rapid cluster application and flexible liquefaction center” has been eventually proposed. The small-scale NG liquefier developed by TIPC has reached a minimum liquefaction power consumption of about 0.35 kW·h/Nm3. It is suitable to exploit small remote gas reserves which can also be used in boil-off gas reliquefaction and distributed peak-shaving of pipe networks.  相似文献   
18.
The present study was aimed to utilize low‐cost alumina (Al2O3) nanoparticles for improving the heat transfer behavior in an intercooler of two‐stage air compressor. Experimental investigation was carried out with three different volume concentrations of 0.5%, 0.75%, and 1.0% Al2O3/water nanofluids to assess the performance of the intercooler, that is, counterflow heat exchanger at different loads. Thermal properties such as thermal conductivity and overall heat transfer coefficient of nanofluid increased substantially with increasing concentration of Al2O3 nanoparticles. Specific heat capacity of nanofluids were lower than base water. The intercooler performance parameters such as effectiveness and efficiency improved appreciably with the employment of nanofluid. The efficiency increased by about 6.1% with maximum concentration of nanofluid, that is, 1% at 3‐bar compressor load. It is concluded from the study that high concentration of Al2O3 nanoparticles dispersion in water would offer better heat transfer performance of the intercooler.  相似文献   
19.
本文分析了燃气热水器行业针对无回水管水路系统实现零冷水功能的现有技术方案,指出现有技术方案存在的一些缺陷,并结合试验研究,对无回水管水路系统提出了一套全新的实现零冷水功能的技术解决方案。  相似文献   
20.
In this study, solvent‐free nanofibrous electrolytes were fabricated through an electrospinning method. Polyethylene oxide (PEO), lithium perchlorate and ethylene carbonate were used as polymer matrix, salt and plasticizer respectively in the electrolyte structures. Keggin‐type hetero polyoxometalate (Cu‐POM@Ru‐rGO, Ni‐POM@Ru‐rGO and Co‐POM@Ru‐rGO (POM, polyoxometalate; rGO, reduced graphene oxide)) nanoparticles were synthesized and inserted into the PEO‐based nanofibrous electrolytes. TEM and SEM analyses were carried out for further evaluation of the synthesized filler structures and the electrospun nanofibre morphologies. The fractions of free ions and crystalline phases of the as‐spun electrolytes were estimated by obtaining Fourier transform infrared and XRD spectra, respectively. The results showed a significant improvement in the ionic conductivity of the nanofibrous electrolytes by increasing filler concentrations. The highest ionic conductivity of 0.28 mS cm?1 was obtained by the introduction of 0.49 wt% Co‐POM@Ru‐rGO into the electrospun electrolyte at ambient temperature. Compared with solution‐cast polymeric electrolytes, the electrospun electrolytes present superior ionic conductivity. Moreover, the cycle stability of the as‐spun electrolytes was clearly improved by the addition of fillers. Furthermore, the mechanical strength was enhanced with the insertion of 0.07 wt% fillers to the electrospun electrolytes. The results implied that the prepared nanofibres are good candidates as solvent‐free electrolytes for lithium ion batteries. © 2020 Society of Chemical Industry  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号