首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19859篇
  免费   1664篇
  国内免费   1153篇
电工技术   385篇
综合类   783篇
化学工业   5851篇
金属工艺   2161篇
机械仪表   555篇
建筑科学   260篇
矿业工程   304篇
能源动力   1959篇
轻工业   418篇
水利工程   361篇
石油天然气   1103篇
武器工业   71篇
无线电   2167篇
一般工业技术   5311篇
冶金工业   434篇
原子能技术   350篇
自动化技术   203篇
  2024年   50篇
  2023年   342篇
  2022年   510篇
  2021年   667篇
  2020年   686篇
  2019年   666篇
  2018年   636篇
  2017年   723篇
  2016年   731篇
  2015年   677篇
  2014年   953篇
  2013年   1274篇
  2012年   1225篇
  2011年   1549篇
  2010年   1242篇
  2009年   1263篇
  2008年   1084篇
  2007年   1198篇
  2006年   1164篇
  2005年   903篇
  2004年   850篇
  2003年   747篇
  2002年   607篇
  2001年   433篇
  2000年   394篇
  1999年   303篇
  1998年   307篇
  1997年   231篇
  1996年   218篇
  1995年   225篇
  1994年   169篇
  1993年   99篇
  1992年   92篇
  1991年   85篇
  1990年   69篇
  1989年   52篇
  1988年   40篇
  1987年   29篇
  1986年   27篇
  1985年   45篇
  1984年   31篇
  1983年   28篇
  1982年   24篇
  1981年   5篇
  1980年   3篇
  1979年   2篇
  1978年   2篇
  1974年   2篇
  1959年   1篇
  1951年   12篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Carbon nanotubes are the most promising reinforcement for high performance composites. Multiwall carbon nanotubes were directly grown onto the carbon fiber surface by catalytic thermal chemical vapor deposition technique. Multi-scale hybrid composites were fabricated using the carbon nanotubes grown fibers with epoxy matrix. Morphology of the grown carbon nanotubes was investigated using field emission scanning electron microscopy and transmission electron microscopy. The fabricated composites were subjected to impact tests which showed 48.7% and 42.2% higher energy absorption in Charpy and Izod impact tests respectively. Fractographic analysis of the impact tested specimens revealed the presence of carbon nanotubes both at the fiber surface and within the matrix which explained the reason for improved energy absorption capability of these composites. Carbon nanotubes presence at various cracks formed during loading provided a direct evidence of micro crack bridging. Thus the enhanced fracture strength of these composites is attributed to stronger fiber–matrix interfacial bonding and simultaneous matrix strengthening due to the grown carbon nanotubes.  相似文献   
2.
Aluminum-doped zinc oxide (ZnO:Al, AZO) electrodes were covered with very thin (∼6 nm) Zn1−xMgxO:Al (AMZO) layers grown by atomic layer deposition. They were tested as hole blocking/electron injecting contacts to organic semiconductors. Depending on the ALD growth conditions, the magnesium content at the film surface varied from x = 0 to x = 0.6. Magnesium was present only at the ZnO:Al surface and subsurface regions and did not diffuse into deeper parts of the layer. The work function of the AZO/AMZO (x = 0.3) film was 3.4 eV (based on the ultraviolet photoelectron spectroscopy). To investigate carrier injection properties of such contacts, single layer organic structures with either pentacene or 2,4-bis[4-(N,N-diisobutylamino)-2,6-dihydroxyphenyl] squaraine layers were prepared. Deposition of the AMZO layers with x = 0.3 resulted in a decrease of the reverse currents by 1–2 orders of magnitude and an improvement of the diode rectification. The AMZO layer improved hole blocking/electron injecting properties of the AZO electrodes. The analysis of the current-voltage characteristics by a differential approach revealed a richer injection and recombination mechanisms in the structures containing the additional AMZO layer. Among those mechanisms, monomolecular, bimolecular and superhigh injection were identified.  相似文献   
3.
Spray quality is the critical factor which decides the efficacy of Small Quantity Lubrication (SQL) technology in a high specific energy involved machining process like grinding. Yet, the understanding about spray quality, the actual process mechanics and its effect on machining performance is inadequate. The present work is an attempt to establish a correlation between the spray input variables, quality of the spray and machining performance of SQL grinding through modelling and experiments. Using computational fluid dynamic techniques, the variation of droplet size, droplet velocity, number of droplets and heat transfer coefficient have been analysed at different input parameters and the computed trends have been verified and validated. CFD modelling of spray indicates that it is possible to produce aerosol medium with high heat dissipation ability at moderately high air pressure and low flow rate. It also shows that any increase in atomising air pressure favourably leads to notable increase in wetting area and also results in substantial enhancement in heat dissipation ability. Reduction of residual stress is thus remarkably good. On the other hand, grinding fluid flow rate, if increased, offers significantly better lubricity and reduces the grinding force which also reduces tensile residual stress. Short spell grinding test results are found to be in good agreement with CFD results.  相似文献   
4.
Passivated single damascene copper SiO2 damascene lines were evaluated in combination with TiSiN and Ta(N)/Ta diffusion barriers. Leakage current, breakdown and time-dependent dielectric breakdown properties were investigated on a wafer level basis for temperatures ranging between room temperature and 150 °C. It is found that the leakage performance of the wafers with a TiSiN barrier is better at room temperature, but at 150 °C the performance levels out with Ta(N)/Ta. Time-dependent dielectric breakdown measurements at 150 °C show that the lifetime of the interconnect is higher with the selected Ta(N)/Ta barrier than for TiSiN.  相似文献   
5.
In this work it is presented a study on the residence time distribution (RTD) of particles in a co-current pilot-plant spray dryer operated with a rotary atomization system. A nuclear technique is applied to investigate the RTD responses of spray dryers. The methodology is based on the injection of a radioisotope tracer in the feed stream followed by the monitoring of its concentration at the outlet stream. The experiments were performed during the drying of aqueous suspensions of gadolinium oxide. The RTD responses obtained experimentally presented good reproducibility, indicating that the technique applied is well suited to investigating fluid-dynamics of spray dryers. In addition to the experimental investigation, a mathematical model was used to describe the RTD experimental curves.  相似文献   
6.
Chemical Composition and Microstructure of Polymer‐Derived Glasses and Ceramics in the Si–C–O System. Part 2: Characterization of microstructure formation by means of high‐resolution transmission electron microscopy and selected area diffraction Liquid or solid silicone resins represent the economically most interesting class of organic precursors for the pyrolytic production of glass and ceramics materials on silicon basis. As dense, dimensionally stable components can be cost‐effectively achieved by admixing reactive filler powders, chemical composition and microstructure development of the polymer‐derived residues must be exactly known during thermal decomposition. Thus, in the present work, glasses and ceramics produced by pyrolysis of the model precursor polymethylsiloxane at temperatures from 525 to 1550 °C are investigated. In part 1, by means of analytical electron microscopy, the bonding state of silicon was determined on a nanometre scale and the phase separation of the metastable Si–C–O matrix into SiO2, C and SiC was proved. The in‐situ crystallization could be considerably accelerated by adding fine‐grained powder of inert fillers, such as Al2O3 or SiC, which permits effective process control. In part 2, the microstructure is characterized by high‐resolution transmission electron microscopy and selected area diffraction. Turbostratic carbon and cubic β‐SiC precipitate as crystallization products. Theses phases are embedded in an amorphous matrix. Inert fillers reduce the crystallization temperature by several hundred °C. In this case, the polymer‐derived Si–C–O material acts as a binding agent between the powder particles. Reaction layer formation does not occur. On the investigated pyrolysis conditions, no crystallization of SiO2 was observed.  相似文献   
7.
Research and development efforts on high-temperature, oxidation-resistant fibres have increased over the past decade due to the demand for light-weight, stiff and strong composite materials in aerospace applications. Varieties of ‘high-performance’, continuous, non-oxide fibres with low-density, high tensile strength and tensile modulus have been developed either from organic precursors or via chemical vapour deposition for fabrication of ceramic matrix composites. Fibres derived from polymer precursors (e.g. Nicalon, Tyranno, HPZ) are small in diameter (compared to CVD monofilaments) and are ideally suited for ceramic composites. Processing, microstructural stability and mechanical properties of these newly developed SiC and Si3N4 base fibres are briefly reviewed in this paper.  相似文献   
8.
Particles and gases can deposit from the atmosphere to polar snow by several mechanisms. Dry deposition can be considered to consist of three steps: aerodynamic transport from the free atmosphere to the viscous sublayer near the surface, boundary layer transport across the sublayer, and interactions with the surface. The particle dry deposition mass flux is dominated by the largest particles present in a size distribution. Wet deposition includes in-cloud and below-cloud scavenging, where the former refers to uptake of particles during nucleation of cloudwater as well as scavenging of particles and gases by existing droplets and ice crystals. Of all the wet deposition mechanisms, nucleation scavenging is often the most important mechanism for particles in the polar regions. Finally, incorporation of particles and gases into fog droplets and subsequent settling of the fog to the snow surface can be an important removal process in regions of frequent fog. For Summit, Greenland, the total deposition of MSA, SO42-, Na+, K+, and Ca2+ during May 24-July 13, 1993 was dominated by wet deposition: this mechanism accounted for an average of 62% of the total deposition for these species. Fog and dry deposition accounted for 21% and 17% of the total, respectively. These results suggest that all three mechanisms may need to be considered when estimating total deposition of certain chemical species to polar snow.  相似文献   
9.
三峡水库减淤增容调度方式研究——多汛限水位调度方案   总被引:8,自引:0,他引:8  
周建军  林秉南  张仁 《水利学报》2002,33(3):0012-0019
本文建议在汛期中小流量时(Q<35000m3/s),将坝前水位维持在148~151m;出现汛情且流量更较大后,将坝前水位降低到143m;入库流量大于35000m3/s且短期预报将出现大于十年一遇洪水时,预泄洪水到135m.按这一调度,汛期约80%时间可以维持在较高水位,一般洪水期。汛限水位143m不影响坝区通航,135m水位迎洪可大量增加防洪库客。到100年后可减淤30亿m3,增加防洪库容约40亿m3.变动回水区减淤40%,优化了坝区水沙搭配,可改善通航条件。降低库区洪水位,缓解防洪与移民的矛盾。可对发电带来较大好处:提高发电效益,减少粗沙过机。初期水库排沙比大于原方案,可减轻下游冲刷。同时,可减小三峡汛初泄水与鄱阳湖防洪的矛盾。  相似文献   
10.
Bimolecular hydrogen transfer and skeletal isomerization the important secondary reac-tions among catalytic cracking reactions,which affect product yield distribution and product quality,Catalyst properties and operating parameters have great impact on bimolecular hydrogen transfer and skeletal isomerization reactions .Bimolecular hydrogen transfer activity and skeletal isomrization activity of USY-containing catalysts are higher thn that of ZSM-5-containing catalyst.Coke deposition on the active sites of catalyst may suppress bimolecular hydrogen transfer activity and skeletal isomer-ization activity of catlys in different degrees.Short raction time causes a decrease of hydrogen trans-fer reaction,but and increase of skeletal isomerization reaction compared to cracking reaction in catalytic cracking process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号