首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2281篇
  免费   45篇
  国内免费   17篇
电工技术   32篇
综合类   39篇
化学工业   1352篇
金属工艺   26篇
机械仪表   25篇
建筑科学   5篇
矿业工程   8篇
能源动力   300篇
轻工业   298篇
水利工程   2篇
石油天然气   20篇
武器工业   10篇
无线电   18篇
一般工业技术   121篇
冶金工业   19篇
原子能技术   53篇
自动化技术   15篇
  2024年   1篇
  2023年   16篇
  2022年   20篇
  2021年   35篇
  2020年   34篇
  2019年   46篇
  2018年   37篇
  2017年   43篇
  2016年   45篇
  2015年   28篇
  2014年   217篇
  2013年   190篇
  2012年   94篇
  2011年   258篇
  2010年   237篇
  2009年   163篇
  2008年   130篇
  2007年   129篇
  2006年   94篇
  2005年   94篇
  2004年   92篇
  2003年   84篇
  2002年   56篇
  2001年   48篇
  2000年   26篇
  1999年   31篇
  1998年   20篇
  1997年   26篇
  1996年   19篇
  1995年   9篇
  1994年   4篇
  1993年   1篇
  1992年   1篇
  1991年   4篇
  1990年   2篇
  1989年   2篇
  1988年   5篇
  1987年   1篇
  1978年   1篇
排序方式: 共有2343条查询结果,搜索用时 15 毫秒
91.
本文以不同的镍基前驱物(氧化镍、乙酸镍、硝酸镍)在超临界甲醇条件下制备超细镍粉体,考察了体系温度、压力、反应时间以及前驱物种类对制备超细镍粉体的影响。通过SEM和XRD对制备产物的形貌和物相进行表征分析。结果表明,超临界甲醇的还原性随着温度和压力的升高而显著增强,在反应体系中,甲醇既起到溶剂作用又起到还原剂的作用。此外,通过考察前驱物种类对制备过程的影响可知,前驱物的种类对制备超细镍有显著的影响,乙酸镍在超临界甲醇250 ℃,9 MPa条件下即能够得到纯的超细镍,硝酸镍则需要更高的温度和压力(280 ℃,14.0 MPa),而以氧化镍为前驱物时即使在300 ℃,20 MPa的条件下也只得到镍和氧化镍的混合物。  相似文献   
92.
Reactor corrosion and plugging problems have hindered the commercialization of supercritical water oxidation (SCWO) for wastewater purification. The use of transpiring wall reactor (TWR) is an effective means to overcome the above two problems by forming a protective water film on the internal surface of the reactor to aviod contacting corrosive species and precipitated organic salts. This work mainly aims to objectively review experimental investigations and numerical simulation results concerning TWR. Subsequent investigations for parameters optimizations of TWR are also proposed in order to ultimately build effective regulation methods of obtaining excellent water film properties. All this information is very important in guiding the structure design and operation parameters optimization of TWR.  相似文献   
93.
Flow separation from a spherical particle in supercritical water (SCW) is the basic flow structure in supercritical water fluidized bed (SCWFB). In order to study flow separation from a spherical particle in SCW in detail, a numerical model fully accounting for variations in thermo-physical properties has been developed in the pseudo-critical zone. Flow separation parameters (separation angle, length of wake vortex, width of wake vortex, and drag coefficient) for forced convection, assisting convection, and opposing convection have been obtained at intermediate Reynolds numbers. Results show that variable viscosity has a remarkable effect on flow separation, and the decreasing viscosity results in higher velocity gradient around the sphere particle surface and a larger wake vortex on the rear particle surface. A simple expression of Cd/Cdc=(μw/μf)0.15Cd/Cdc=(μw/μf)0.15 is achieved to predicate the drag coefficient of the SCW flow with μw/μfμw/μf between 0.7 and 1.0. Free convection inhibits the flow separation of the assisting convection, but enhances the flow separation of the opposing convection. Three flow separation zones (the rear-end separation zone, the transition zone, and the reversed flow zone) are observed for the opposing convection.  相似文献   
94.
In this work, the primary amine template has been extracted from freshly synthesized hexagonal mesoporous silica (HMS) materials by means of modified supercritical carbon dioxide at 60–85 °C under 10.0–20.0 MPa. The influences of amine identity and matrix Al/Si ratio on the extraction efficiencies and structural properties of HMS thus obtained are investigated in detail. The results show that the extraction efficiency is strongly dependent on the pore size of the HMS materials produced by five different templates. For aluminium-incorporated samples, the extraction efficiency is observed to decrease with the Al/Si molar ratio since as the Al/Si molar ratio increases, more amine will get protonated and the matrix/template interactions become stronger, subsequently rendering the extraction more difficult and the efficiency decrease. The formic acid modifier has resulted in better extraction performance than methanol, yielding higher extraction efficiencies. The SFE-treated materials exhibit better structural properties like higher pore volume and specific surface area as compared to those prepared by conventional calcinations. Besides, results of pyridine adsorption and conversion of 2-propanol to propylene suggest that the SFE-treated HMS materials may have higher acidity than the directly calcined samples.  相似文献   
95.
In this paper, we numerically study particle formation in the rapid expansion of supercritical solution (RESS) process in a two dimensional, axisymmetric geometry, for a benzoic acid + CO2 system. The fluid is described by the classical Navier–Stokes equation, with the thermodynamic pressure being replaced by a generalized pressure tensor. Homogenous particle nucleation, transport, condensation and coagulation are described by a general dynamic equation, which is solved using the method of moments. The results show that the maximal nucleation rate and number density occurs near the nozzle exit, and particle precipitation inside the nozzle might not be ignored. Particles grow mainly across the shocks. Fluid in the shear layer of the jet shows a relatively low temperature, high nucleation rate, and carries particles with small sizes. On the plate, particles within the jet have smaller average size and higher geometric mean, while particles outside the jet shows a larger average size and a lower geometric mean. Increasing the preexpansion temperature will increase both the average particle size and standard deviation. The preexpansion pressure does not show a monotonic dependency with the average particle size. Increasing the distance between the plate and the nozzle exit might decrease the particle size. For all the cases in this paper, the average particle size on the plate is on the order of tens of nanometers.  相似文献   
96.
This article describes the preparation of porous poly (ɛ-caprolactone), PCL, membranes by supercritical CO2 (SCCO2) foaming, displaying surface hierarchical macroporosity which could be tailored by careful control of the pressure, in the range of 150–250 bar, and depressurization processes in several steps, showing also pore interconnectivity between both membrane faces. The membranes exhibited two distinct types of surface macroporosity, the larger with diameter sizes of 300–500 μm were surrounded by and also composed of smaller pores of 15–50 μm (same size as inner pores). Membranes were prepared by solvent casting and submitted to different SCCO2 foaming. Parameters such as membrane thickness, CO2 flow, foaming time, pressure, temperature and the depressurization processes (rate and profiles), were varied to determine their influence on final porosity and to decipher which parameters were the most critical ones in terms of surface hierarchical pore organization. No remarkable changes in PCL crystallinity were found when membranes were processed under SCCO2. Finally, biological evaluation of the porous membranes was achieved by seeding human skin fibroblasts on the prepared membranes. The results, in terms of cell adhesion, spreading, proliferation and metabolic activity indicate that these membranes could hold promise for the fabrication of meshes with controlled porosity for tissue engineering applications.  相似文献   
97.
The influence of diverse factors on the supercritical fluid extraction (SFE) with supercritical CO2 (scCO2) of galanthamine from bulbs of Narcissus pseudonarcissus cv. Carlton was investigated. The parameters that were studied were CO2 density (temperature and pressure), flow rate and plant material particle size and pre-treatment. The highest yield (303 μg/g) was achieved by extracting 53–1000 μm particle-size powdered dried bulb material moistened with NH4OH (25%, v/v) at 70 °C, 220 bar (690 kg/m3) for 3 h. Other N. pseudonarcissus alkaloids such as O-methyllycorenine and haemanthamine were also obtained. N. pseudonarcissus alkaloids as free bases are highly soluble in CO2 at a high pH as opposed to the slightly soluble salt form in which they are generally found in plants. Therefore, plant material pre-treatment with a base is an essential step for galanthamine extraction. Scanning electron microscope (SEM) results also revealed that the desorption of N. pseudonarcissus alkaloids from the plant material rather than the solubility of the alkaloids in the scCO2 plays a major role in this scCO2 extraction. This extraction method has a good potential for industrial application.  相似文献   
98.
Oil was extracted from the peach (Prunus persica) seeds by supercritical carbon dioxide. Principal phytosterols (stigmasterol, campesterol and β-sitosterol) that have been known to have cholesterol lowering properties were investigated in the extracted oil. Based on gas chromatography–mass spectrometry (GC–MS) analysis, β-sitosterol was identified in the peach seed oil. The effects of temperature, pressure, flow rate of supercritical CO2, mean particle size of the seeds and extraction time on the amounts of extracted oil and β-sitosterol were investigated. Supercritical fluid extractions were performed in a range of 35–55 °C, 160–240 bar, 4–8 ml CO2/min, 0.3–1.7 mm and 1–4 h for mentioned parameters. The results indicated that the amounts of oil and β-sitosterol extracted from the peach seeds were optimal with values of 35.3 g/100 g seed and 1220 mg/kg seed respectively at 40 °C, 200 bar, 7 ml/min, 0.3 mm and 3 h.  相似文献   
99.
Liquid drilling fluid is often called drilling mud is heavy, viscous fluid mixtures use to carry rock cuttings to the surface and lubricate and cool the drill bit. During carrying cuttings they contaminated which not only reduce their functionality but also make them a hazardous and dangerous wastes which cannot be discharged anywhere without treatment. Due to this fact, in the present study, supercritical extraction process was used to remove contaminants from the drilling mud. Regarding this, effect of different parameters including extraction temperature (313–338 K) and pressure (100–200 bar), flow rate of CO2 (0.05–0.36 cm3/s) and static time (20–130 min) on the removal of contaminations from drilling mud was examined using the design of experiment of changing one factor at a time. The obtained results revealed that the optimum operational conditions that lead to the highest removal degree of contaminations are temperature and pressure of 333 K and 180 bar, respectively, flow rate of lower than 0.1 cm3/s and the static time of 110 min. In addition, to examine the effect of the supercritical extraction on the crystalline structure modification and removal contaminations X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses were performed which confirmed the successful removal of contaminations from the drilling mud without significant crystalline modification.  相似文献   
100.
In this study, the essential oil of aerial parts of a species of a plant called Smyrnium cordifolium Boiss (SCB) was extracted by supercritical CO2. The essence was analyzed by the method of GC/MS. Design of experiments was carried out with response surface methodology by Minitab 16 software to optimize four operating variables of supercritical carbon dioxide (SC-CO2) extraction (pressure, temperature, CO2 flow rate and extraction dynamic time). This is the first report announcing optimization of the operation of supercritical extraction of SCB in laboratorial conditions. Optimizing process was done to achieve maximum yield extraction. Independent variables were dynamic time (td), pressure (P), temperature (T) and flow rate of SC-CO2 (Q) in the range of 30–150 min, 10–30 MPa, 40–60 °C and 0.5–1.7 ml/min, respectively. The experimental optimal recovery of essential oil (0.8431, w/w%) was obtained at 13.43 MPa, 40 °C, 150 min (dynamic) and 1.7 ml/min (CO2 flow rate).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号