首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1475篇
  免费   162篇
  国内免费   68篇
电工技术   23篇
综合类   41篇
化学工业   572篇
金属工艺   154篇
机械仪表   24篇
建筑科学   8篇
矿业工程   9篇
能源动力   120篇
轻工业   17篇
石油天然气   4篇
武器工业   4篇
无线电   171篇
一般工业技术   502篇
冶金工业   29篇
原子能技术   4篇
自动化技术   23篇
  2024年   2篇
  2023年   27篇
  2022年   42篇
  2021年   70篇
  2020年   57篇
  2019年   77篇
  2018年   78篇
  2017年   77篇
  2016年   59篇
  2015年   53篇
  2014年   91篇
  2013年   88篇
  2012年   85篇
  2011年   129篇
  2010年   75篇
  2009年   121篇
  2008年   111篇
  2007年   102篇
  2006年   90篇
  2005年   67篇
  2004年   52篇
  2003年   44篇
  2002年   29篇
  2001年   20篇
  2000年   13篇
  1999年   18篇
  1998年   8篇
  1997年   7篇
  1996年   4篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1985年   1篇
排序方式: 共有1705条查询结果,搜索用时 31 毫秒
21.
SBA15–TiO2 samples prepared by introducing titanium with a grafting method and having TiO2 loadings below 15 wt.% have been characterized by XRF, XRD, IR, porosimetry, SEM, HRTEM, and UV–Visible diffuse reflectance. Differently from the samples reported in the literature characterized by a high TiO2 loading, no evidences have been found for the presence of titania particles inside or outside the mesopores of SBA-15. Three different titanium species were instead evidenced to be present. The first two derive from the reaction of titanium with silanol groups in the corona area of inner SBA-15 walls leading to the formation of either TiO4 tetrahedral sites (by reaction by hydroxyl nests of surface defect sites) and/or pseudo-octahedral surface sites anchored by two (or more) Si or Ti ions through bridging oxygens. The third species derives from the reaction of titanium in the regions with high sylanol density, e.g. in the micropores located in the corona of SBA-15 channels, leading to the formation of TiO2-like nanoareas (probably Si-doped) with dimensions of around 1–2 nm maximum. The potential interest of these materials as photocatalysts, for the presence of a TiO2-like nanoareas highly accessible by reactants, is discussed.  相似文献   
22.
Titania (TiO2) was immobilized onto hydroxylated glass beads (HGB) via the thermal bonding and sol–gel coating methods. The photocatalytic activity and adherence stability of the prepared supported photocatalysts were studied in a fluidized bed photoreactor. P25 thermally bonded HGB was found to be more active than sol–gel coated HGB prepared with the same immobilization conditions, while both of them exhibited poor adherence stability, i.e., large amounts of immobilized TiO2 detached from HGB during the degradation. The adherence stability was improved with limited extents by increasing the calcination temperature or reducing the coverage of TiO2 on HGB, but either of these approaches resulted in lower activity. The poor adherence stability was ascribed to the fluid shear force and particle friction in fluidized bed, as well as the insufficient bonding between TiO2 and HGB in terms of the bonding mechanism.

Hydroxylated quartz sands (HQS) and silica gel beads (SGB) were further studied and used as supports. Results have shown that the adherence stability was significantly improved with SGB but only slightly improved with HQS. Characterizations results showed that a coarser surface and more surface Si–OH groups could improve the adherence stability of supported TiO2 photocatalysts.  相似文献   

23.
The oxidation of benzyl alcohol with molecular oxygen under solvent-free conditions has been investigated using a range of titania-supported Au–Pd alloy catalysts to examine the effect of the Au–Pd ratio on the conversion and selectivity. The catalysts have been compared at high reaction temperature (160 °C) as well as at 100 °C, to determine the effect on selectivity since at lower reaction temperature the range of by-products that are formed are limited. Under these conditions the 2.5 wt.% Au–2.5 wt.% Pd/TiO2 was found to be the most active catalyst, whereas the Au/TiO2 catalyst demonstrated the highest selectivity to benzaldehyde. Toluene, formed via either a hydrogen transfer process or an oxygen transfer process, was observed as a major by-product under these forcing conditions.  相似文献   
24.
The catalytic activity of sulfated titania (ST) calcined at a variety of temperatures has been investigated for selective catalytic reduction (SCR) of NO by NH3. The NO removal activity of ST catalyst mainly depends on its sulfur content, indicating critical role of sulfur species on the surface of TiO2. The role of sulfur is mainly the formation of acid sites on the catalyst surface. The presence of both BrØnsted and Lewis acid sites on the surface of sulfated titania has been identified by IR study with the adsorption of NH3 and pyridine on ST. The reduction of the intensity of IR bands representing BrØsted acid sites is more pronounced than that revealing Lewis acid sites as the calcination temperature increases. It has been further clarified by IR study of ST500 catalyst evacuated at a variety of temperatures. The NO removal activity also decreases with the increase of the catalyst calcination temperature. It simply reveals that BrØnsted acid sites induced by sulfate on the catalyst surface are primarily responsible for the enhancement of catalytic activity of ST catalyst containing sulfur for NO reduction by NH3.  相似文献   
25.
混合碱法是以熔融的无水混合碱(氢氧化钠和氢氧化钾)做为溶剂,以成本低廉的氧化物和金属无机盐作为反应物,在常压,200℃左右合成陶瓷粉体的方法.混合碱法合成微米甚至纳米结构的粉体具有成本低,温度低,粉体结构的生长可以得到有效的控制的优点,因此混合碱法是一种快速制备粉体的比较理想方法.  相似文献   
26.
Epitaxial CoFe2O4 (CFO) and SrRuO3 (SRO) nanopillar heterostructures were deposited on Pb(Mg1/3Nb2/3)0.70Ti0.30O3 (PMN-30PT) single crystal substrates by switch pulsed laser deposition (SPLD). Since the CFO nanopillars are insulating, and the SRO matrix conductive, this self-assembled nanopillar heterostructure served as a patterned electrode on PMN-PT, which then enhances the dielectric and piezoelectric constant of the substrate. Cross-sectional electron microscopy images revealed the formation of a nanopillar heterostructure layer with CFO nanopillars within a SRO matrix. AFM and XRD revealed good topography and epitaxy, indicating a high quality SRO-CFO self-assembled nanopillar structure. Using a SRO-CFO thin film patterned electrode, PMN-PT was found to have a notably higher (30%) dielectric constant with increasing electric field and enhanced transverse broadening in reciprocal spacing mapping (RSM) scans.  相似文献   
27.
Nano-titania (TiO2) incorporated into polyimide (PI) matrix can significantly enhance the adhesion strength for PI/TiO2 hybrid film and copper system. Surface modifications by various plasma treatments (Ar, Ar/N2 and Ar/O2) were also applied in this study to improve the adhesion strength. The Ar/N2 plasma treatment is regarded as the more effective way in promoting the adhesion strength. The maximum adhesion value of 9.53 N/cm was obtained for the PI/TiO2-1 wt% hybrid film with Ar/N2 plasma treatment. It is enhanced about 10 times as large as pristine PI. Furthermore, by Ar/O2 plasma treatment, a weak boundary of copper oxide was formed at the interlayer between PI/TiO2 hybrid film and copper which decreases the adhesion strength. The effects of plasma treatment and content of nanosized TiO2 on the adhesion strength between PI/TiO2 hybrid film and copper system were studied. Atomic force microscope and contact angle analyses were used to measure the changes in surface morphology and surface energy as a result of plasma treatment. Besides, the interfacial states of peeled-off polymer side and copper side were investigated by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Based on the result of XPS spectra, the peeled-off failure mode between PI/TiO2 hybrid film and copper was proposed in this study.  相似文献   
28.
This study reports a green and powerful strategy for preparing cellulose nanocrystal (CNC)/graphene oxide (GO)/natural rubber (NR) nanocomposites hosting a 3D hierarchical conductive network. Due to good dispersibility and amphiphilic nature of CNC, well dispersed CNC/GO nanohybrids were prepared. Hydrogen bonding interactions between CNC and GO greatly enhanced the stability of the CNC/GO nanohybrids. CNC/GO nanohybrids were introduced into NR latex under sonication and the mixture was cast. Self-assembled CNC/GO nanohybrids preferentially dispersed in the interstice between latex microspheres allowing the construction of a 3D hierarchical conductive network. By combining strong hydrogen bonds and 3D conductive network, both electrical conductivity and mechanical properties (tensile strength and modulus) have been significantly improved. The electrical conductivity of the nanocomposite with 4 wt% GO and 5 wt% CNC exhibited an increase of nine orders of magnitude compared to the nanocomposite with only 4 wt% GO; meanwhile, the electrical percolation threshold was 3-fold lower than for NR/GO composites.  相似文献   
29.
A novel kind of vacancy-rich nanowire arrays were prepared by reducing rough Co3O4 nanowires with NaBH4 solution on 3D nickel foam at room temperature for overall water splitting. Co3O4/NF treated by NaBH4 for 10 min was highly active for oxygen evolution reaction (OER) and simultaneously efficient for hydrogen evolution reaction (HER) with the need of the overpotentials of 240 and 132 mV to drive 10 mA·cm-2 in alkaline media, respectively. Furthermore, the electrocatalysts as both cathode and anode in a two-electrode system presented excellent durability for over 60 h at 10 mA·cm-2, maintaining the cell voltage of merely 1.63 V. This work provides new methods and ideas for the preparation of transition metal oxide bifunctional electrocatalysts rich in oxygen vacancies.  相似文献   
30.
To improve the electrochemical lithium storage performance of molybdenum nitrides, Mo2N quantum dots@nitrogen-doped graphene oxide sponge (Mo2N-QDs@Ngs) was prepared by hydrothermal reaction, freeze-drying and calcination in H2/N2 mixture with ammonium molybdate ((NH4)Mo7O24·4H2O), hexamethylenetetramine (C6H12N4) and graphene oxide (GO) as raw materials. The effect of GO content on the electrochemical lithium storage performance was investigated. The transmission electron microscope (TEM) results show that the size of the prepared Mo2N quantum dots is about 2—5 nm, and the Mo2N quantum dots are uniformly distributed on the surface of nitrogen-doped graphene. The electrochemical test results show that when the GO content is 30%, the prepared Mo2N-QDs@Ngs-30 has the best electrochemical lithium storage performance, which has 699 mA·h·g-1 specific capacity at the current density of 0.1 A·g-1, and has 286 mA·h·g-1 specific capacity even at the current density of 2 A·g-1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号