首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1475篇
  免费   162篇
  国内免费   68篇
电工技术   23篇
综合类   41篇
化学工业   572篇
金属工艺   154篇
机械仪表   24篇
建筑科学   8篇
矿业工程   9篇
能源动力   120篇
轻工业   17篇
石油天然气   4篇
武器工业   4篇
无线电   171篇
一般工业技术   502篇
冶金工业   29篇
原子能技术   4篇
自动化技术   23篇
  2024年   2篇
  2023年   27篇
  2022年   42篇
  2021年   70篇
  2020年   57篇
  2019年   77篇
  2018年   78篇
  2017年   77篇
  2016年   59篇
  2015年   53篇
  2014年   91篇
  2013年   88篇
  2012年   85篇
  2011年   129篇
  2010年   75篇
  2009年   121篇
  2008年   111篇
  2007年   102篇
  2006年   90篇
  2005年   67篇
  2004年   52篇
  2003年   44篇
  2002年   29篇
  2001年   20篇
  2000年   13篇
  1999年   18篇
  1998年   8篇
  1997年   7篇
  1996年   4篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1985年   1篇
排序方式: 共有1705条查询结果,搜索用时 296 毫秒
31.
Metal-based thermal barrier coatings (MBTBCs) have been produced using high frequency induction plasma spraying (IPS) of iron-based nanostructured alloy powders. The study of MBTBCs has been initiated to challenge issues associated with current TBC materials such as difficult prediction of their “in-service” lifetime. Reliability of TBCs is an important aspect besides the economical consideration. Therefore, the study of MBTBCs, which should posses higher toughness than the current TBC materials, has been initiated to challenge the mechanical problems of ceramic-based TBCs (CBTBCs) to create a new generation of TBCs. The thermal diffusivity (TD) (α) properties of the MBTBCs were measured using a laser flash method, and density (ρ) and specific heat (C p) of the MBTBCs were also measured for their thermal conductivity (k) calculation (k = αρ C p).  相似文献   
32.
Until very recently, the reported tensile ductility of ultra-high strength nanocrystalline metals was disappointingly low. This article presents a brief overview of recent progress in identifying a group of nanostructured bulk elemental metals that offer not only gigapascal strength but also decent ductility. These include electrodeposited nanocrystalline or nano-twinned metals, and consolidated full-density nanocrystalline metals. Our own recent studies of these interesting nanomaterials, extending our previous/parallel success in optimizing the properties of bulk nanostructured metals prepared via severe plastic deformation, also demonstrated unprecedented tensile plastic strains.  相似文献   
33.
Titanium nitride (TIN) films with nanostructure were prepared at ambient temperature on a (111) silicon substrate by the filtered cathodic arc plasma (FCAP) technology with an in-plane "S" filter. The effects of deposition parameters on the grain size, texture and nano-hardness of the films were systematically investigated. The grain size was obtained through calculation using the Scherrer formula and observed by TEM. The results of X-ray diffraction and electron diffraction indicated that increasing either negative substrate bias or argon flow promoted the formation of (111) preferred orientation. High argon flow leads to biaxial texture. The micro-hardness of the TIN films as a function of grain size showed a behavior according to the Hall-Petch relation under high argon flow.  相似文献   
34.
Simple, CAD compatible small‐signal scalable circuit model for the thin film parallel‐plate ferroelectric varactors is reported. It is based on the measured permittivity and loss tangent of the ferroelectric films along with the fundamental theoretical relationships of ferroelectrics in paraelectric phase. The model makes use of the measured DC field (voltage) at the inflection point of the C‐V curve where the nonlinearity (dC/dV) and the tunability are maximum. Both the capacitance and the equivalent loss resistance (dielectric losses) in the ferroelectric film take into account the low permittivity layers at the boundaries of the nano‐columns of the film. The frequency dependent losses in the top and bottom plates of the varactors and the parasitic inductance of the plates are also taken into account. The model is valid for ferroelectric films having columnar structure. It is useful in wide temperature, DC field, and frequency ranges. © 2008 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2009.  相似文献   
35.
A cobalt-silica hybrid nanocatalyst bearing small cobalt particles of diameter ~5 nm was prepared through a hydrothermal reaction and hydrogen reduction.The resulting material showed very high CO conversion (>82%) and high hydrocarbon productivity (~1.0 gHc·g-1cat,·h-11) with high activity (~8.5 x 10-5 molco·g-1Co·S-1) in the Fischer-Tropsch synthesis reaction.  相似文献   
36.
Sodium ion batteries (SIB) are considered promising alternative candidates for lithium ion batteries (LIB) because of the wide availability and low cost of sodium, therefore the development of alternative sodium storage materials with comparable performance to LIB is urgently desired. The sodium ions with larger sizes resist intercalation or alloying because of slow reaction kinetics. Most pseudocapacitive sodium storage materials are based on subtle nanomaterial engineering, which is difficult for large‐scale production. Here, ferroelectric Sn2P2S6 with layered nanostructure is developed as sodium ion storage material. The ferroelectricity‐enhanced pseudocapacitance of sodium ion in the interlayer spacing makes the electrochemical reaction easier and faster, endowing the Sn2P2S6 electrode with excellent rate capability and cycle stability. Furthermore, the facile solid state reaction synthesis and common electrode fabrication make the Sn2P2S6 that becomes a promising anode material of SIB.  相似文献   
37.
An efficient photoanode based on CdS nanorod@SnO2 nanobowl (CdS NR@SnO2 NB) arrays is designed and fabricated by the preparation of SnO2 nanobowl arrays via nanosphere lithography followed by hydrothermal growth of CdS nanorods on the inner surface of the SnO2 nanobowls. A photoelectrochemical (PEC) device constructed by using this hierarchical CdS NR@SnO2 NB photoanode presents significantly enhanced performance with a photocurrent density of 3.8 mA cm?2 at 1.23 V versus a reversible hydrogen electrode (RHE) under AM1.5G solar light irradiation, which is about 2.5 times higher than that of CdS nanorod arrays. After coating with a thin layer of SiO2, the photostability of the CdS NR@SnO2 NB arrays is greatly enhanced, resulting in a stable photoanode with a photocurrent density of 3.0 mA cm?2 retained at 1.23 V versus the RHE. The much improved performance of the CdS NR@SnO2 NB arrays toward PEC hydrogen generation can be ascribed to enlarged surface area arising from the hierarchical nanostructures, improved light harvesting owing to the NR@NB architecture containing multiple scattering centers, and enhanced charge separation/collection efficiency due to the favorable CdS–SnO2 heterojunction.  相似文献   
38.
Electrodes with micro-gaps are fabricated by using dc-sputtering and FIB techniques. SnO2 nanowires are deposited on the micro-gap (1-30 μm) by suspension dropping method to fabricate a micro-gas sensor. The sensing ability of various SnO2 micro-gap sensors is measured. A comparison between sensors reveals that the short-gap electrode has numerous advantages in terms of reliability, high sensitivity and detection of low concentrations of NO2, while the large-gap electrode is relatively sensitive for high concentrations. Conductance measurements are carried out at different surface temperatures and NO2 concentrations in order to investigate the effects that the gap size has on the overall sensor conductance. The results suggest that the interface between the electrode and sensitive layer has a very important role for the sensing mechanism of tin dioxide gas sensors.  相似文献   
39.
以钛酸四丁酯为原料,三乙醇胺为形态控制剂,采用简单的凝胶溶胶-水热法制备了单分散的纳米级二氧化钛(TiO2)粒子。采用X-Ray衍射仪(XRD)、透射电镜(TEM)等手段对粒子的结构与形貌进行了分析。并考察了合成的纳米TiO2子的电化学性能和光催化活性。  相似文献   
40.
Yibing Xie  Li Min Zhou  Haitao Huang   《Materials Letters》2006,60(29-30):3558-3560
Self-organized and highly-ordered TiO2 nanotube array with disjunctive wall-hole structure has been synthesized from titanium foil by potentiostatic–galvanostatic anodization process. The morphology and microstructure of the TiO2 layer depend greatly on the electrolyzing parameters and electrolyte components. TiO2 formation mechanism by anodization oxidation is discussed. The crystallized TiO2/Ti nanotube electrode exhibited a significant enhancement of photoelectrochemical current response in comparison with micrometer-sized TiO2/Ti multiporous electrode. Such kind of TiO2 nanotube will have many potential applications in various areas as an outstanding photoelectrochemical material.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号