首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14855篇
  免费   916篇
  国内免费   1609篇
电工技术   265篇
综合类   726篇
化学工业   3149篇
金属工艺   4344篇
机械仪表   537篇
建筑科学   165篇
矿业工程   182篇
能源动力   475篇
轻工业   132篇
水利工程   8篇
石油天然气   295篇
武器工业   215篇
无线电   1574篇
一般工业技术   3903篇
冶金工业   1046篇
原子能技术   134篇
自动化技术   230篇
  2024年   41篇
  2023年   259篇
  2022年   364篇
  2021年   454篇
  2020年   474篇
  2019年   434篇
  2018年   438篇
  2017年   558篇
  2016年   538篇
  2015年   555篇
  2014年   729篇
  2013年   869篇
  2012年   841篇
  2011年   1148篇
  2010年   839篇
  2009年   983篇
  2008年   824篇
  2007年   1055篇
  2006年   937篇
  2005年   627篇
  2004年   614篇
  2003年   555篇
  2002年   551篇
  2001年   509篇
  2000年   487篇
  1999年   391篇
  1998年   284篇
  1997年   256篇
  1996年   211篇
  1995年   125篇
  1994年   120篇
  1993年   91篇
  1992年   80篇
  1991年   36篇
  1990年   41篇
  1989年   23篇
  1988年   12篇
  1987年   6篇
  1986年   7篇
  1985年   3篇
  1984年   3篇
  1983年   3篇
  1981年   2篇
  1977年   1篇
  1976年   1篇
  1959年   1篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
991.
The correlations among the corrosion behaviour, grain-boundary microchemistry, and Zn content in Al–Zn–Mg–Cu alloys were studied using stress corrosion cracking (SCC) and intergranular corrosion (IGC) tests, combined with scanning electron microscopy (SEM) and high-angle angular dark field scanning transmission electron microscopy (HAADF-STEM) microstructural examinations. The results showed that the tensile strength enhancement of high Zn-containing Al–Zn–Mg–Cu alloys was mainly attributed to the high density nano-scale matrix precipitates. The SCC plateau velocity for the alloy with 11.0 wt.% Zn was about an order of magnitude greater than that of the alloy with 7.9 wt.% Zn, which was mainly associated with Zn enrichment in grain boundary precipitates and wide precipitates-free zones. The SCC mechanisms of different Zn-containing alloys were discussed based on fracture features, grain-boundary microchemistry, and electrochemical properties.  相似文献   
992.
In order to determine the effect of heat treatment on the mechanical and wear properties of Zn–40Al– 2Cu–2Si alloy, different heat treatments including homogenization followed by air-cooling (H1), homogenization followed by furnace-cooling (H2), stabilization (T5) and quench–aging (T6 and T7) were applied. The effects of these heat treatments on the mechanical and tribological properties of the alloy were studied by metallography and, mechanical and wear tests in comparison with SAE 65 bronze. The wear tests were performed using a block on cylinder type test apparatus. The hardness, tensile strength and compressive strength of the alloy increase by the application of H1 and T6 heat treatments, and all the heat treatments except T6, increase its elongation to fracture. H1, T5 and T6 heat treatments cause a reduction in friction coefficient and wear volume of the alloy. However, this alloy exhibits the lowest friction coefficient and wear volume after T6 heat treatment. Therefore, T6 heat treatment appears to be the best process for the lubricated tribological applications of this alloy at a pressure of 14 MPa. However, Zn–40Al–2Cu–2Si alloy in the as-cast and heat-treated conditions shows lower wear loss or higher wear resistance than the bronze.  相似文献   
993.
In order to improve the hardness and tribological performance of Ti6Al4V alloy, NiCoCrAlY–B4C composite coatings with B4C of 5%, 10% and 15% (mass fraction) were fabricated on its surface by laser cladding (LC). The morphologies, chemical compositions and phases of obtained coatings were analyzed using scanning electronic microscope (SEM), energy dispersive spectrometer (EDS), and X-ray diffraction (XRD), respectively. The effects of B4C mass fraction on the coefficient of friction (COF) and wear rate of NiCoCrAlY–B4C coatings were investigated using a ball-on-disc wear tester. The results show that the NiCoCrAlY–B4C coatings with different B4C mass fractions are mainly composed of NiTi, NiTi2, α-Ti, CoO, AlB2, TiC, TiB and TiB2 phases. The COFs and wear rates of NiCoCrAlY–B4C coatings decrease with the increase of B4C content, which are contributed to the improvement of coating hardness by the B4C addition. The wear mechanisms of NiCoCrAlY–B4C coatings are changed from adhesive wear and oxidation wear to fatigue wear with the increase of B4C content.  相似文献   
994.
The uniaxial tensile test of the 5A06-O aluminium–magnesium (Al–Mg) alloy sheet was performed in the temperature range of 20–300 °C to obtain the true stress–true strain curves at different temperatures and strain rates. The constitutive model of 5A06-O Al–Mg alloy sheet with the temperature range from 150 to 300°C was established. Based on the test results, a unique finite element simulation platform for warm hydroforming of 5A06-O Al–Mg alloy was set up using the general finite element software MSC.Marc to simulate warm hydroforming of classic specimen, and a coupled thermo-mechanical finite element model for warm hydroforming of cylindrical cup was built up. Combined with the experiment, the influence of the temperature field distribution and loading conditions on the sheet formability was studied. The results show that the non-isothermal temperature distribution conditions can significantly improve the forming performance of the material. As the temperature increases, the impact of the punching speed on the forming becomes particularly obvious; the optimal values of the fluid pressure and blank holder force required for forming are reduced.  相似文献   
995.
The electrochemical dissolution and passivation of laser additive manufactured Ti6Al4V were investigated through Tafel polarization, potentiostatic polarization and AC impedance measurements. The results show that the solution treatment−aging (STA) process aggravates the element micro-segregation compared to the annealing process, leading to varied Al and V contents of the phases from different samples. It is proven that either Al-rich or V-rich condition can highly affect the electrochemical dissolution behaviors due to thermodynamical instability caused by element segregation. The dissolution rate in the metastable passivation process is controlled by the stability of the produced film that is affected by phases distribution, especially the difficult-to-dissolve phase. And then, the dissolution rate of the phases in the transpassivation region is consistent with the rank in the activation process because the dense film is not capable of being produced. Compared to the annealed sample, the higher dissolution rate of the STA sample is beneficial to the electrochemical machining (ECM) of Ti6Al4V.  相似文献   
996.
The properties of Sc-doped θ′ (Al2Cu)/Al interface in Al−Cu alloys were investigated by first-principles calculations. Sc-doped semi-coherent and coherent θ′ (Al2Cu)/Al interfaces (Sc doped in Al slab (S1 site), Sc doped in θ′ slab (S2 site)) were modeled based on calculated results and reported experiments. Through the analysis of interfacial bonding strength, it is revealed that the doping of Sc at S1 site can significantly decrease the interface energy and increase the work of adhesion. In particular, the doped coherent interface with Sc at S1 site which is occupied by interstitial Cu atoms has very good bonding strength. The electronic structure shows the strong Al—Cu bonds at the interfaces with Sc at S1 site, and the Al—Al bonds at the interfaces with Sc at S2 site are formed. The formation of strong Al—Cu and Al—Al bonds plays an important role in the enhancement of doped interface strength.  相似文献   
997.
To explore the hot compression behavior and microstructural evolution, fine-grained Al?1.88Mg?0.18Sc? 0.084Er (wt.%) aluminum alloy wires were fabricated with Castex (continuous casting?extrusion) and ECAP-Conform, and their hot compression behavior was investigated at temperatures of 673?793 K and strain rates of 0.001?10 s?1; the microstructures were characterized by optical microscope, X-ray diffractometer, transmission electron microscope, and electron backscattered diffractometer, and the flow stresses were obtained by thermal compression simulator. Microstructural evolution and flow curves reveal that dynamic recovery is the dominant softening mechanism. Continuous dynamic recrystallization followed by dynamic grain growth takes place at a temperature of 773 K and a strain rate of 0.001 s?1; the yielding drop phenomenon was discovered. Hyperbolic sine constitutive equation incorporating dislocation variables was presented, and a power law constitutive equation was established. The stress exponent is 3.262, and the activation energy for deformation is 154.465 kJ/mol, indicating that dislocation viscous glide is the dominant deformation mechanism.  相似文献   
998.
Al?high Si alloys were designed by the addition of Cu or Mg alloying elements to improve the mechanical properties. It is found that the addition of 1 wt.% Cu or 1 wt.% Mg as strengthening elements significantly improves the tensile strength by 27.2% and 24.5%, respectively. This phenomenon is attributed to the formation of uniformly dispersed fine particles (Al2Cu and Mg2Si secondary phases) in the Al matrix during hot press sintering of the rapidly solidified (gas atomization) powder. The thermal conductivity of the Al?50Si alloys is reduced with the addition of Cu or Mg, by only 7.3% and 6.8%, respectively. Therefore, the strength of the Al?50Si alloys is enhanced while maintaining their excellent thermo-physical properties by adding 1% Cu(Mg).  相似文献   
999.
研究辊速差对连铸连轧7075铝板显微组织、织构及力学性能的影响.采用3种不同上辊/下辊转速比(ω/ω0,ω为上辊转速,ω0为下辊转速)1:1、1:1.2及1:1.4进行多次试验.结果显示,在最大辊速差条件下(ω/ω0=1:1.4),7075铝板在轧制方向的屈服强度和极限抗拉强度分别提高41.5%和21.9%.此外,当辊...  相似文献   
1000.
The microstructure characteristics in early stage shear localization of near-α Ti?6Al?2Zr?1Mo?1V titanium alloy were investigated by split Hopkinson pressure bar (SHPB) tests using hat-shaped specimens. The microstructural evolution and deformation mechanisms of hat-shaped specimens were revealed by electron backscattered diffraction (EBSD) method. It is found that the nucleation and expansion of adiabatic shear band (ASB) are affected by both geometric and structural factors. The increase of dislocation density, structure fragment and temperature rise in the deformation-affected regions provide basic microstructural conditions. In addition to the dislocation slips, the extension twins detected in shear region also play a critical role in microstructural fragmentation due to twin-boundaries effect. Interestingly, the sandwich structure imposes a crucial influence on ASB, which finally becomes a mature wide ASB in the dynamic deformation. However, due to much larger width, the sandwich structure in the middle of shear region is also possible to serve as favorable nucleation sites for crack initiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号