首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   386651篇
  免费   32989篇
  国内免费   19899篇
电工技术   32439篇
技术理论   64篇
综合类   45925篇
化学工业   44335篇
金属工艺   14326篇
机械仪表   22028篇
建筑科学   50282篇
矿业工程   18934篇
能源动力   24500篇
轻工业   20426篇
水利工程   16657篇
石油天然气   18322篇
武器工业   3875篇
无线电   26731篇
一般工业技术   29491篇
冶金工业   21685篇
原子能技术   4598篇
自动化技术   44921篇
  2024年   1441篇
  2023年   4761篇
  2022年   8690篇
  2021年   10054篇
  2020年   10900篇
  2019年   9125篇
  2018年   8290篇
  2017年   10017篇
  2016年   11647篇
  2015年   12530篇
  2014年   22895篇
  2013年   21134篇
  2012年   26499篇
  2011年   28270篇
  2010年   22328篇
  2009年   22860篇
  2008年   21068篇
  2007年   26644篇
  2006年   24714篇
  2005年   21239篇
  2004年   18000篇
  2003年   16128篇
  2002年   13467篇
  2001年   11466篇
  2000年   9758篇
  1999年   7916篇
  1998年   6012篇
  1997年   5188篇
  1996年   4698篇
  1995年   3922篇
  1994年   3468篇
  1993年   2574篇
  1992年   2245篇
  1991年   1697篇
  1990年   1466篇
  1989年   1295篇
  1988年   1020篇
  1987年   686篇
  1986年   513篇
  1985年   477篇
  1984年   430篇
  1983年   313篇
  1982年   291篇
  1981年   215篇
  1980年   192篇
  1979年   141篇
  1978年   79篇
  1977年   94篇
  1976年   62篇
  1975年   60篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
51.
Against the background of smart manufacturing and Industry 4.0, how to achieve real-time scheduling has become a problem to be solved. In this regard, automatic design for shop scheduling based on hyper-heuristics has been widely studied, and a number of reviews and scheduling algorithms have been presented. Few studies, however, have specifically discussed the technical points involved in algorithm development. This study, therefore, constructs a general framework for automatic design for shop scheduling strategies based on hyper-heuristics, and various state-of-the-art technical points in the development process are summarized. First, we summarize the existing types of shop scheduling strategies and classify them using a new classification method. Second, we summarize an automatic design algorithm for shop scheduling. Then, we investigate surrogate-assisted methods that are popular in the current algorithm field. Finally, current problems and challenges are discussed, and potential directions for future research are proposed.  相似文献   
52.
Macroalgae are rich in carbohydrates which can be used as a promising substrate for fermentative biohydrogen production. In this study, Cladophora sp. biomass was fermented for biohydrogen production at various inoculum/substrate (I/S) ratios against a control of inoculum without substrate in laboratory-scale batch reactors. The biohydrogen production yield ranged from 40.8 to 54.7 ml H2/g-VS, with the I/S ratio ranging from 0.0625 to 4. The results indicated that low I/S ratios caused the overloaded accumulation of metabolic products and a significant pH decrease, which negatively affected hydrogen production bacteria's metabolic activity, thus leading to the decrease of hydrogen fermentation efficiency. The overall results demonstrated that Cladophora sp. biomass is an efficient fermentation feedstock for biohydrogen production.  相似文献   
53.
When planning large-scale 100% renewable energy systems (RES) for the year 2050, the system capacity is usually oversized for better supply-demand matching of electrical energy since solar and wind resources are highly intermittent. This causes excessive excess energy that is typically dissipated, curtailed, or sold directly. The public literature shows a lack of studies on the feasibility of using this excess for country-scale co-generation. This study presents the first investigation of utilizing this excess to generate green hydrogen gas. The concept is demonstrated for Jordan using three solar photovoltaic (PV), wind, and hybrid PV-wind RESs, all equipped with Lithium-Ion battery energy storage systems (ESSs), for hydrogen production using a polymer electrolyte membrane (PEM) system. The results show that the PV-based system has the highest demand-supply fraction (>99%). However, the wind-based system is more favorable economically, with installed RES, ESS, and PEM capacities of only 23.88 GW, 2542 GWh, and 20.66 GW. It also shows the highest hydrogen annual production rate (172.1 × 103 tons) and the lowest hydrogen cost (1.082 USD/kg). The three systems were a better option than selling excess energy directly, where they ensure annual incomes up to 2.68 billion USD while having payback periods of as low as 1.78 years. Furthermore, the hydrogen cost does not exceed 2.03 USD/kg, which is significantly lower than the expected cost of hydrogen (3 USD/kg) produced using energy from fossil fuel-based systems in 2050.  相似文献   
54.
Hydrogen as an energy carrier can play a significant role in reducing environmental emissions if it is produced from renewable energy resources. This research aims to assess hydrogen production from wind energy considering environmental, economic, and technical aspect for the East Azerbaijan province of Iran. The economic assessment is performed by calculation of payback period, levelized cost of hydrogen, and levelized cost of electricity. Since uncertainty in the power output of wind turbines may affect the payback period, all calculations are performed for four different turbine degradation rates. While it is common in the literature to choose the wind turbine based on a single criterion, this study implements Multi-Criteria Decision-Making (MCDM) techniques for this purpose. The results of Step-wise Weight Assessment Ratio Analysis illustrates that economic issue is the most important criterion for this research. The results of Weighted Aggregated Sum Product Assessment shows that Vestas V52 is the most suitable wind turbine for Ahar and Sarab cities, while Eovent EVA120 H-Darrieus is a better choice for other stations. The most suitable location for wind power generation is found to be Ahar, where it is estimated to annually generate 2914.8 kWh of electricity at the price of 0.045 $/kWh, and 47.2 tons of hydrogen at the price of 1.38 $/kg, which result in 583 tons of CO2 emission reduction.  相似文献   
55.
In this paper, a salinity gradient solar pond (SGSP) is used to harness the solar energy for hydrogen production through two cycles. The first cycle includes an absorption power cycle (APC), a proton exchange membrane (PEM) electrolyzer, and a thermoelectric generator (TEG) unit; in the second one, an organic Rankine cycle (ORC) with the zeotropic mixture is used instead of APC. The cycles are analyzed through the thermoeconomic vantage point to discover the effect of key decision variables on the cycles’ performance. Finally, NSGA-II is used to optimize both cycles. The results indicate that employing ORC with zeotropic mixture leads to a better performance in comparison to utilizing APC. For the base mode, unit cost product (UCP), exergy, and energy efficiency when APC is employed are 59.9 $/GJ, 23.73%, and 3.84%, respectively. These amounts are 47.27 $/GJ, 29.48%, and 5.86% if ORC with the zeotropic mixture is utilized. The APC and ORC generators have the highest exergy destruction rate which is equal to 6.18 and 10.91 kW. In both cycles, the highest investment cost is related to the turbine and is 0.8275 $/h and 0.976 $/h for the first and second cycles, respectively. In the optimum state the energy efficiency, exergy efficiency, UCP, and H2 production rate of the system enhances 42.44%, 27.54%,15.95%, and 38.24% when ORC with the zeotropic mixture is used. The maximum H2 production is 0.47 kg/h, and is obtained when the mass fraction of R142b, LCZ temperature, pumps pressure ratio, generator bubble point temperature are 0.603, 364.35 K, 2.12, 337.67 K, respectively.  相似文献   
56.
This study demonstrates the significant improvement in NH3 decomposition using Ni-decorated M–Mo–N-based catalysts (M = Co and Ni) compared with conventional catalysts. Catalysts are prepared using a mixture of the corresponding metal salts and hexamethylenetetramine, and the impregnation method is used to decorate the Ni-particles on the catalysts. Among all the samples, 10 wt% Ni-decorated Co3Mo3N exhibits the highest NH3 conversion rate (71%) at 500 °C, and the performance remains stable for 30 h of long-term testing. According to the gas chromatography measurements, the H2/N2 ratio is approximately 3 in all cases, which is consistent with the theoretical value. X-ray photoelectron spectroscopy results show that Co3Mo3N possesses the highest NH3 conversion efficiency because of the weaker binding energy of Mo–N. Furthermore, Co3Mo3N exhibits a stronger Lewis acidity and higher NH3 decomposition, which is attributed to the easy breaking of the N–H bond on the Co3Mo3N surface.  相似文献   
57.
The effect of heat loss on the syngas production from partial combustion of fuel-rich in a divergent two-layer burner is numerically studied using two-dimensional model with detailed kinetics GRI-Mech 1.2. Both the radiation and wall heat losses to the surrounding are considered in the computations. It is shown that two types heat losses have different effects on the syngas production. The radiation heat loss has significant effect on the syngas temperature and the syngas temperature is dropped as radiation heat loss is increased, but it has neglected effect on the reforming efficiency and methane conversion efficiency. The wall heat loss has a comprehensive effect on the syngas production. The wall heat loss not only reduces the conversion efficiency, but also significantly decreases the syngas temperature. The effect of wall heat loss becomes weak as the equivalence is increased. The reforming efficiency drops from 0.440 to 0.424 for equivalence ratio of 2 and mixture velocity of 0.17 m/s for the predictions between adiabatic wall and non-adiabatic conditions.  相似文献   
58.
In the present work, two types of shear thickening fluids have been synthesized by using neat and aminosilane functionalized silica nanoparticles and their viscosity curves have been obtained by the rheometer. Based on the values of peak viscosity of synthesized shear thickening fluids, the surface functionalized nanosilica based shear thickening fluid has been chosen as a best candidate due to the high viscosity for impregnation into the neat Kevlar of different layers viz. four (04) and eight (08) layers for velocity impact study. The experimental investigations reveal high energy absorption of shear thickening fluid impregnated Kevlar as compared to the neat Kevlar. The maximum energy absorption 62 J is achieved corresponding to the initial velocity 154 m∙s−1 for 08 layers shear thickening fluid impregnated Kevlar specimen. The data have also been analytically determined and validated with the experimental data. The experimental data have good agreement with the analytical data within the accuracy of around 15 to 20%. The present findings can have significant inferences towards the fabrication of shear thickening fluids using nanomaterials for numerous applications such as soft armors, dampers, nanofinishing and so forth.  相似文献   
59.
Borazine rings act as a pivotal part in siliconboroncarbonitride ceramics (SiBCN) for high-temperature stability and great resistance to crystallization. A detailed investigation of the ring formation mechanism will guide the design and synthesis of SiBCN to meet application requirements under extreme conditions. Boron trichloride (BCl3) and hexamethyldisilazane (HN(SiMe3)2) are common raw materials for the synthesis of precursors for SiBCN. In this paper, quantum chemical calculation was used to study the cyclization reaction mechanism between BCl3 and HN(SiMe3)2 to form trichloroborazine (TCBZ) at the MP2/6-31G (d,p) level of theory. We discussed the structure properties, reaction pathways, energy barriers, reaction rates, and other aspects in detail. The results show that BCl3 and HN(SiMe3)2 alternately participate in the reaction process, accompanied by the release of trimethylchlorosilane (TMCS), and that the entire reaction shows an absolute advantage in terms of energy. In the Step by step reaction, lower reaction barriers are formed due to the introduction of BCl3 with more heat released compared to that for the introduction of HN(SiMe3)2. The final single-molecule cyclization and TMCS elimination steps are found to be faster compared to all previous bimolecular reactions.  相似文献   
60.
This article proposes an active balancer, which features bidirectional charge shuttling and adaptive equalization current control, to fast counterbalance the state of charge (SOC) of cells in a lithium-ion battery (LIB) string. The power circuit consists of certain bidirectional buck-boost converters to transfer energy among the different cells back and forth. Owing to the characterization of the open-circuit voltage (OCV) vs SOC in LIB being relatively smooth near the SOC middle range, the SOC-inspected balance strategy can achieve more precise and efficient equilibrium than the voltage-based control. Accordingly, a compensated OCV-based SOC estimation is put forward to take into account the discrepancy of SOC estimation. Besides, the varied-duty-cycle (VDC) and curve-fitting modulation (CFM) methods are devised herein to tackle the problems of slow equalization rate and low balance efficacy, which arise from the diminution in balancing current as the SOC difference between the cells decreases in the later duration of equalization especially. The proposed strategies have taken the battery nonlinear characteristic and circuit parameter nonideality into account and can adaptively modulate the duty cycle with the SOC difference to keep balancing current constant throughout the balancing cycle. Simulated and experimental results are given to demonstrate the feasibility and effectiveness of the same prototype constructed. Compared with the fixed duty cycle and the VDC methods, the proposed CFM has the best balancing efficiency of 81.4%, and the balance time is shortened by 27.1% and 18.6%, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号