首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2905篇
  免费   340篇
  国内免费   142篇
电工技术   52篇
综合类   219篇
化学工业   570篇
金属工艺   107篇
机械仪表   55篇
建筑科学   145篇
矿业工程   17篇
能源动力   1380篇
轻工业   60篇
水利工程   76篇
石油天然气   58篇
武器工业   4篇
无线电   61篇
一般工业技术   304篇
冶金工业   49篇
原子能技术   138篇
自动化技术   92篇
  2024年   15篇
  2023年   61篇
  2022年   62篇
  2021年   138篇
  2020年   104篇
  2019年   113篇
  2018年   71篇
  2017年   92篇
  2016年   88篇
  2015年   89篇
  2014年   118篇
  2013年   247篇
  2012年   177篇
  2011年   197篇
  2010年   145篇
  2009年   171篇
  2008年   145篇
  2007年   162篇
  2006年   125篇
  2005年   135篇
  2004年   126篇
  2003年   130篇
  2002年   110篇
  2001年   81篇
  2000年   64篇
  1999年   75篇
  1998年   58篇
  1997年   43篇
  1996年   49篇
  1995年   31篇
  1994年   26篇
  1993年   23篇
  1992年   28篇
  1991年   13篇
  1990年   11篇
  1989年   19篇
  1988年   15篇
  1987年   7篇
  1986年   8篇
  1985年   3篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1981年   1篇
  1975年   1篇
  1951年   2篇
排序方式: 共有3387条查询结果,搜索用时 31 毫秒
991.
卜令帅  屈治国  徐洪涛  金满 《化工学报》2021,72(8):4064-4072
利用相变材料定温储能特性,搭建了以水为换热流体、相变微胶囊(MPCM)悬浮液为储能介质的潜热储能系统。采用放冷速率、相变完成率、单位体积放冷量和对流传热系数表征实验系统的放冷特性,通过该潜热储能系统与以纯水为工作介质的显热储能系统的对比,分析了循环水体积流量以及搅拌速率对系统放冷性能的影响。结果表明:MPCM主要在17~19℃范围内发生相变,当悬浮液温度到达20℃时,其相变完成率接近90%;增大循环水流量可以提高放冷速率,循环水体积流量为6 L·min-1时,MPCM悬浮液的放冷速率在相变区间最高可达1.52 kW,相较于显热储能系统提升了70%;在0~200 r·min-1的范围内,增大搅拌速率可增大MPCM悬浮液的单位体积放冷量和对流传热系数,搅拌速率为200 r·min-1时,MPCM悬浮液的单位体积放冷量和对流传热系数分别为73.86 MJ·m-3和2176 W·m-2·K-1,比显热储能系统分别高1.66倍和1.87倍。  相似文献   
992.
目的 探索不同振动参数下水平振动抛磨颗粒介质的流动模式和流场特性.方法 基于离散元法(DEM),对水平振动抛磨工艺下的颗粒介质运动特性进行模拟,分析颗粒介质的流场特征和不同参数下颗粒介质的流态变化,研究颗粒介质床层高度比、空区变化和对流面积比对整个颗粒系统对流强度的影响,以及颗粒介质的平均速度对流场的影响,并通过高速摄影速度测试实验验证模拟的有效性.结果 在外部振动作用下,颗粒介质流场可分为对流区、混流区和稳流区3个区域.随着频率的增加,颗粒介质的平均速度在18 Hz达到最大,然后减小.随着振幅的增加,颗粒介质的平均速度增大.颗粒介质的床层高度比、空区和对流面积比的变化与平均速度随振动参数的变化趋势一致.结论 随着振幅增大或是频率达到18 Hz左右时,平均速度变大,颗粒介质床层逐渐由上层到下层从只有稳流类固态转变为有对流与混流的类液态.颗粒介质的平均速度与对流强度的变化趋势一致,因此可通过前者预测后者的变化,而且增加振幅比增加频率能够更有效地提升对流的流化程度.  相似文献   
993.
The improvement of the cooling performance of liquid-cooled microchannel heat sinks used for densely packed electronic circuits is sorted via passive techniques like tuning substrate or coolant properties. We propose a design for enhancing heat sink performance by simulataneously modifying the channel geometry and tuning the fluid rheology. By modeling the coolant as a power law fluid, its rheological behavior is varied ranging from shear-thinning to shear-thickening, alongside Newtonian fluid. We introduced tapering to the middle wall that separates the bottom and top channels of a double layered microchannel heat sink (DL-MCHS), causing both channels to converge. This convergence not only increases the flow velocity within the downstream microchannel but also reduces the apparent viscosity of the shear-thinning fluid being subjected to shear, resulting in enhanced thermal and hydraulic performance. We analyze the results from both the first and the second law of thermodynamics context, demonstrating that a tapered DL-MCHS with shear-thinning fluid outperforms a straight partition wall DL-MCHS with Newtonian coolant. However, we also discovered that extreme tapering compromises thermodynamic viability, but by fine-tuning the extent of tapering, we inferred that a DL-MCHS with shear-thinning fluid can become viable with little compromise in the thermal performance.  相似文献   
994.
Wellbore instability problems are often encountered while drilling in water active shales due to changes in pore pressure. The change in pore pressure is caused by hydraulic, thermal, chemical, and electrical potential gradients. In all previous studies it has been found that the effects of ion advection and thermal convection have a negligible effect on changes in pore pressure for a range of very low permeable shale formations (>10?5 md). This is an appropriate assumption for very low permeable shale formations. For high permeable shale formations (e.g., shale with a disseminated microfissure network), however, thermal convection and ion advection can play a significant role. The authors present a hydro-chemo-thermo-electrical model based on finite element method to investigate the effect of advection on ion transfer and thermal convection on temperature and their combined effect on pore pressure in shale formations. All equations are based on the thermodynamics of irreversible processes in a discontinuous system. The characteristic Galerkin discretization method is used to stabilize the solution of advection and convection equations in the finite element approach. Results of this study revealed that ion and heat transfer are controlled primarily by permeability of the shale formations. Movement of fluid into or out of the formation is due to a combination of hydraulic, chemical, electrical, and thermal osmotic flow. Results have also shown that in high permeable shale formations the chemical potential gradient between the pore fluid and drilling fluid reaches equilibrium faster than in low permeable shale formations. This is mainly due to the advection of ion from drilling fluid to the shale formation.  相似文献   
995.
针对埋地输气管道泄漏气体在土壤中的迁移过程,以FLUENT软件为平台,研究了泄漏气体在土壤中的对流扩散规律,得到泄漏后的气体会在管道泄漏口形成椭球形的高浓度区,以浓度差为主要推动力的横向扩散小于以压力差为主要推动力的纵向对流,该结论与全尺度试验结论吻合。以甲烷爆炸下限扩散半径与地面甲烷质量分数的变化为尺度,研究了土壤性质包括土壤孔隙率、土壤含水率、土壤密度对气体对流扩散行为的影响,得出土壤孔隙率才是影响气体对流扩散行为的重要因素。模拟所得结论为埋地管道泄漏风险评估、事故应急疏散、管道设计与施工等提供了参考。  相似文献   
996.
Fluid turbulence is a paradigm for non-linear systems with many degrees of freedom and important in numerous applications. Because the analytical understanding of the equations of motion is poor, experiments and, lately, direct numerical simulations of the equations of motion, have been fundamental to making progress. In this vein, a concerted experimental effort has been made to take advantage of the unique properties of liquid and gaseous helium at low temperatures near or below the critical point. We discuss the promise and impact of results from recent helium experiments and identify the current technical barriers which can perhaps be removed by low temperature researchers. We focus mainly on classical flows that utilize helium above the lambda line, but touch on those aspects below that exhibit quasi-classical behavior.  相似文献   
997.
The optimal design of the cathode gas diffusion layer (GDL) for direct methanol fuel cells (DMFCs) is not only to attain better cell performance, but also to achieve better water management for the DMFC system. In this work, the effects of both the PTFE loading in the cathode backing layer (BL) as well as in the micro-porous layer (MPL) and the carbon loading in the MPL on both water transport and cell performance were investigated experimentally. The experimental data showed that with the presence of a hydrophobic MPL in the GDL, the water-crossover flux through the membrane decreased slightly with increasing the PTFE loading in the BL. However, a higher PTFE loading in the BL not only lowered cell performance, but also resulted in an unstable discharging process. It was also found that the PTFE loading in the MPL had little effect on the water-crossover flux, but its effect on cell performance was substantial: the 40-wt% PTFE loading in the MPL was found to be the optimal value to achieve the best performance. The experimental results further showed that increasing the carbon loading in the MPL significantly lowered the water-crossover flux, but a too high carbon loading would decrease the cell performance as the result of the increased oxygen transport resistance; the 2.0-mg C cm−2 carbon loading was found to exhibit the best performance.  相似文献   
998.
In order to understand the influence of curvature on thermocapillary‐buoyancy convection in a differentially heated annular pool with an outer heated cylinder ($ro=40 mm$) and an inner cooled cylinder (ri=20 or 10 mm), a series of unsteady two‐dimensional numerical simulations using the finite‐volume method was conducted. The pool was filled with 0.65 cSt silicone oil (Prandtl number Pr=6.7); its depth changed from 0.5 to 1.5 mm. Simulation results show that the flows with different curvature are all stable at small temperature differences. Increasing the temperature difference, the flow transition to an oscillatory flows occurs. The critical temperature difference, depending on the curvature of annulus, is determined. It was found that there is a good agreement between the simulation and the experiment results on the critical temperature difference. ©2007 Wiley Periodicals, Inc. Heat Trans Asian Res, 36(4): 187– 197, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20157  相似文献   
999.
The steady‐state responses of four heat flux gauges (Schmidt–Boelter, Gardon, directional flame thermometer (DFT) and hemispherical heat flux gauge (HFG)) were examined under various radiative and convective heating conditions. In radiative environments, Gardon measurements were up to 8% higher than Schmidt–Boelter measurements, but in mixed radiative–convective environments, Gardon measurements were 8–18% below those of the Schmidt–Boelter gauge. This difference increased as the convective portion of the total heat transfer increased, due to discrepancies between the radiation‐based calibration environment and the application environment. The DFT data in radiative environments were comparable with the Schmidt–Boelter and Gardon values (within 12%), with the difference largely attributed to natural convection losses from the DFT. In mixed environments, the DFT values were significantly lower than those of the Schmidt–Boelter gauge due to differences in the surface temperatures of the gauges, resulting in the convective flow cooling, rather than heating, the DFT. The HFG heat flux estimates were 35–48% lower than the Schmidt–Boelter measurements under radiative conditions, influenced by large conduction losses from the sensor plate to the gauge housing. Lateral conduction due to a mismatch between the experimental convective flow outlet diameter and the gauge width also affected results from the DFT and HFG. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
1000.
本文以针状肋为研究对象,对换热系数沿长度方向变化时肋片中的传热进行了分析与求解,并提出了当量换热系数的概念.使变换热系数问题可转化为常换热系数问题来分析.文中还给出了对变截面的肋片进行数值求解得到的结果.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号