首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53871篇
  免费   4135篇
  国内免费   2651篇
电工技术   2749篇
综合类   2040篇
化学工业   13970篇
金属工艺   3065篇
机械仪表   1878篇
建筑科学   728篇
矿业工程   505篇
能源动力   14180篇
轻工业   3668篇
水利工程   140篇
石油天然气   2642篇
武器工业   307篇
无线电   3612篇
一般工业技术   5445篇
冶金工业   2051篇
原子能技术   2173篇
自动化技术   1504篇
  2024年   197篇
  2023年   1464篇
  2022年   2786篇
  2021年   3101篇
  2020年   2287篇
  2019年   2096篇
  2018年   1709篇
  2017年   1909篇
  2016年   1837篇
  2015年   1682篇
  2014年   2956篇
  2013年   3650篇
  2012年   3324篇
  2011年   4444篇
  2010年   3242篇
  2009年   2962篇
  2008年   2746篇
  2007年   2914篇
  2006年   2569篇
  2005年   2089篇
  2004年   1798篇
  2003年   1462篇
  2002年   1352篇
  2001年   1161篇
  2000年   879篇
  1999年   683篇
  1998年   588篇
  1997年   481篇
  1996年   403篇
  1995年   336篇
  1994年   287篇
  1993年   227篇
  1992年   188篇
  1991年   141篇
  1990年   141篇
  1989年   106篇
  1988年   80篇
  1987年   52篇
  1986年   46篇
  1985年   61篇
  1984年   57篇
  1983年   29篇
  1982年   37篇
  1981年   14篇
  1980年   20篇
  1979年   14篇
  1978年   5篇
  1974年   3篇
  1959年   13篇
  1951年   23篇
排序方式: 共有10000条查询结果,搜索用时 20 毫秒
101.
WHO Grade 4 IDH-wild type astrocytoma (GBM) is the deadliest brain tumor with a poor prognosis. Meningioma (MMA) is a more common “benign” central nervous system tumor but with significant recurrence rates. There is an urgent need for brain tumor biomarkers for early diagnosis and effective treatment options. Extracellular vesicles (EVs) are tiny membrane-enclosed vesicles that play essential functions in cell-to-cell communications among tumor cells. We aimed to identify epitopes of brain tumor EVs by phage peptide libraries. EVs from GBM plasma, MMA plasma, or brain tumor cell lines were used to screen phage-displayed random peptide libraries to identify high-affinity peptides. We purified EVs from three GBM plasma pools (23 patients), one MMA pool (10 patients), and four brain tumor cell lines. We identified a total of 21 high-affinity phage peptides (12 unique) specific to brain tumor EVs. The peptides shared high sequence homologies among those selected by the same EVs. Dose–response ELISA demonstrated that phage peptides were specific to brain tumor EVs compared to controls. Peptide affinity purification identified unique brain tumor EV subpopulations. Significantly, GBM EV peptides inhibit brain tumor EV-induced complement-dependent cytotoxicity (necrosis) in neurons. We conclude that phage display technology could identify specific peptides to isolate and characterize tumor EVs.  相似文献   
102.
Small-cell lung cancer (SCLC) is the most aggressive form of lung cancer and the leading cause of global cancer-related mortality. Despite the earlier identification of membrane-proximal cleavage of cell adhesion molecule 1 (CADM1) in cancers, the role of the membrane-bound fragment of CAMD1 (MF-CADM1) is yet to be clearly identified. In this study, we first isolated MF-CADM1-specific fully human single-chain variable fragments (scFvs) from the human synthetic scFv antibody library using the phage display technology. Following the selected scFv conversion to human immunoglobulin G1 (IgG1) scFv-Fc antibodies (K103.1–4), multiple characterization studies, including antibody cross-species reactivity, purity, production yield, and binding affinity, were verified. Finally, via intensive in vitro efficacy and toxicity evaluation studies, we identified K103.3 as a lead antibody that potently promotes the death of human SCLC cell lines, including NCI-H69, NCI-H146, and NCI-H187, by activated Jurkat T cells without severe endothelial toxicity. Taken together, these findings suggest that antibody-based targeting of MF-CADM1 may be an effective strategy to potentiate T cell-mediated SCLC death, and MF-CADM1 may be a novel potential therapeutic target in SCLC for antibody therapy.  相似文献   
103.
104.
105.
Myocarditis in response to COVID-19 vaccination has been reported since early 2021. In particular, young male individuals have been identified to exhibit an increased risk of myocardial inflammation following the administration of mRNA-based vaccines. Even though the first epidemiological analyses and numerous case reports investigated potential relationships, endomyocardial biopsy (EMB)-proven cases are limited. Here, we present a comprehensive histopathological analysis of EMBs from 15 patients with reduced ejection fraction (LVEF = 30 (14–39)%) and the clinical suspicion of myocarditis following vaccination with Comirnaty® (Pfizer-BioNTech) (n = 11), Vaxzevria® (AstraZenica) (n = 2) and Janssen® (Johnson & Johnson) (n = 2). Immunohistochemical EMB analyses reveal myocardial inflammation in 14 of 15 patients, with the histopathological diagnosis of active myocarditis according the Dallas criteria (n = 2), severe giant cell myocarditis (n = 2) and inflammatory cardiomyopathy (n = 10). Importantly, infectious causes have been excluded in all patients. The SARS-CoV-2 spike protein has been detected sparsely on cardiomyocytes of nine patients, and differential analysis of inflammatory markers such as CD4+ and CD8+ T cells suggests that the inflammatory response triggered by the vaccine may be of autoimmunological origin. Although a definitive causal relationship between COVID-19 vaccination and the occurrence of myocardial inflammation cannot be demonstrated in this study, data suggest a temporal connection. The expression of SARS-CoV-2 spike protein within the heart and the dominance of CD4+ lymphocytic infiltrates indicate an autoimmunological response to the vaccination.  相似文献   
106.
Glycyrrhizic acid (GA), a natural compound isolated from licorice (Glycyrrhiza glabra), has exhibited anti-inflammatory and anti-tumor effects in vitro. Dipotassium glycyrrhizinate (DPG), a dipotassium salt of GA, also has shown an anti-tumor effect on glioblastoma cell lines, U87MG and T98G. The study investigated the DPG effects in the melanoma cell line (SK-MEL-28). MTT assay demonstrated that the viability of the cells was significantly decreased in a time- and dose-dependent manner after DPG (IC50 = 36 mM; 24 h). DNA fragmentation suggested that DPG (IC50) induced cellular apoptosis, which was confirmed by a significant number of TUNEL-positive cells (p-value = 0.048) and by PARP-1 [0.55 vs. 1.02 arbitrary units (AUs), p-value = 0.001], BAX (1.91 vs. 1.05 AUs, p-value = 0.09), and BCL-2 (0.51 vs. 1.07 AUs, p-value = 0.0018) mRNA compared to control cells. The proliferation and wound-healing assays showed an anti-proliferative effect on DPG-IC50-treated cells, also indicating an inhibitory effect on cell migration (p-values < 0.001). Moreover, it was observed that DPG promoted a 100% reduction in melanospheres formation (p-value = 0.008). Our previous microRNAs (miRs) global analysis has revealed that DPG might increase miR-4443 and miR-3620 expression levels. Thus, qPCR showed that after DPG treatment, SK-MEL-28 cells presented significantly high miR-4443 (1.77 vs. 1.04 AUs, p-value = 0.02) and miR-3620 (2.30 vs. 1.00 AUs, p-value = 0.01) expression compared to control cells, which are predicted to target the NF-kB, CD209 and TNC genes, respectively. Both genes are responsible for cell attachment and migration, and qPCR revealed significantly decreased CD209 (1.01 vs. 0.54 AUs, p-value = 0.018) and TNC (1.00 vs. 0.31 AUs, p-value = 2.38 × 10−6) mRNA expression levels after DPG compared to untreated cells. Furthermore, the migration of SK-MEL-28 cells stimulated by 12-O-tetradecanoylphorbol-13-acetate (TPA) was attenuated by adding DPG by wound-healing assay (48 h: p-value = 0.004; 72 h: p-value = 7.0 × 10−4). In addition, the MMP-9 expression level was inhibited by DPG in melanoma cells stimulated by TPA and compared to TPA-treated cells (3.56 vs. 0.99 AUs, p-value = 0.0016) after 24 h of treatment. Our results suggested that DPG has an apoptotic, anti-proliferative, and anti-migratory effect on SK-MEL-28 cells. DPG was also able to inhibit cancer stem-like cells that may cause cerebral tumor formation.  相似文献   
107.
Glioblastoma multiforme is a lethal disease and represents the most common and severe type of glioma. Drug resistance and the evasion of cell death are the main characteristics of its malignancy, leading to a high percentage of disease recurrence and the patients’ low survival rate. Exploiting the modulation of cell death mechanisms could be an important strategy to prevent tumor development and reverse the high mortality and morbidity rates in glioblastoma patients. Ferroptosis is a recently described type of cell death, which is characterized by iron accumulation, high levels of polyunsaturated fatty acid (PUFA)-containing phospholipids, and deficiency in lipid peroxidation repair. Several studies have demonstrated that ferroptosis has a potential role in cancer treatment and could be a promising approach for glioblastoma patients. Thus, here, we present an overview of the mechanisms of the iron-dependent cell death and summarize the current findings of ferroptosis modulation on glioblastoma including its non-canonical pathway. Moreover, we focused on new ferroptosis-inducing compounds for glioma treatment, and we highlight the key ferroptosis-related genes to glioma prognosis, which could be further explored. Thereby, understanding how to trigger ferroptosis in glioblastoma may provide promising pharmacological targets and indicate new therapeutic approaches to increase the survival of glioblastoma patients.  相似文献   
108.
Erythropoietin (EPO) is known as a hormone for erythropoiesis in response to anemia and hypoxia. However, the effect of EPO is not only limited to hematopoietic tissue. Several studies have highlighted the neuroprotective function of EPO in extra-hematopoietic tissues, especially the retina. EPO could interact with its heterodimer receptor (EPOR/βcR) to exert its anti-apoptosis, anti-inflammation and anti-oxidation effects in preventing retinal ganglion cells death through different intracellular signaling pathways. In this review, we summarized the available pre-clinical studies of EPO in treating glaucomatous optic neuropathy, optic neuritis, non-arteritic anterior ischemic optic neuropathy and traumatic optic neuropathy. In addition, we explore the future strategies of EPO for optic nerve protection and repair, including advances in EPO derivates, and EPO deliveries. These strategies will lead to a new chapter in the treatment of optic neuropathy.  相似文献   
109.
研究了乙二醇在氧化物CeO2、NiO和Co3O4增强Pd/C催化剂上的碱性溶液中电化学氧化活性,结果显示虽然纯Pd/C催化剂对乙二醇的电化学氧化活性非常低以及抗催化剂毒化作用非常弱,其电化学性能远远比不上Pt/C催化剂。但添加氧化物CeO2、NiO和Co3O4后,Pd/C对乙二醇电化学氧化催化活性和抗毒化能力都得到大幅度提高,甚至超过商业催化剂E-TEKPt/C。三种氧化物增强Pd/C催化剂的电化学活性顺序为Pd-Co3O4(质量比为2︰1,以下同)/C>Pd-NiO(4︰1)/C>Pd-CeO2(1.3︰1)/C。  相似文献   
110.
We recently described cell-projection pumping as a mechanism transferring cytoplasm between cells. The uptake of fibroblast cytoplasm by co-cultured SAOS-2 osteosarcoma cells changes SAOS-2 morphology and increases cell migration and proliferation, as seen by single-cell tracking and in FACS separated SAOS-2 from co-cultures. Morphological changes in SAOS-2 seen by single cell tracking are consistent with previous observations in fixed monolayers of SAOS-2 co-cultures. Notably, earlier studies with fixed co-cultures were limited by the absence of a quantitative method for identifying sub-populations of co-cultured cells, or for quantitating transfer relative to control populations of SAOS-2 or fibroblasts cultured alone. We now overcome that limitation by a novel Cartesian plot analysis that identifies individual co-cultured cells as belonging to one of five distinct cell populations, and also gives numerical measure of similarity to control cell populations. We verified the utility of the method by first confirming the previously established relationship between SAOS-2 morphology and uptake of fibroblast contents, and also demonstrated similar effects in other cancer cell lines including from melanomas, and cancers of the ovary and colon. The method was extended to examine global DNA methylation, and while there was no clear effect on SAOS-2 DNA methylation, co-cultured fibroblasts had greatly reduced DNA methylation, similar to cancer associated fibroblasts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号