首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34382篇
  免费   3298篇
  国内免费   1262篇
电工技术   1704篇
综合类   1081篇
化学工业   8696篇
金属工艺   788篇
机械仪表   1033篇
建筑科学   609篇
矿业工程   189篇
能源动力   10320篇
轻工业   3012篇
水利工程   123篇
石油天然气   1355篇
武器工业   206篇
无线电   2943篇
一般工业技术   3894篇
冶金工业   687篇
原子能技术   1643篇
自动化技术   659篇
  2024年   119篇
  2023年   953篇
  2022年   2033篇
  2021年   2414篇
  2020年   1644篇
  2019年   1514篇
  2018年   1275篇
  2017年   1412篇
  2016年   1370篇
  2015年   1233篇
  2014年   1986篇
  2013年   2418篇
  2012年   2099篇
  2011年   3103篇
  2010年   2178篇
  2009年   1982篇
  2008年   1754篇
  2007年   1786篇
  2006年   1445篇
  2005年   1096篇
  2004年   907篇
  2003年   747篇
  2002年   701篇
  2001年   570篇
  2000年   424篇
  1999年   262篇
  1998年   286篇
  1997年   222篇
  1996年   173篇
  1995年   113篇
  1994年   101篇
  1993年   86篇
  1992年   83篇
  1991年   81篇
  1990年   52篇
  1989年   49篇
  1988年   32篇
  1987年   33篇
  1986年   27篇
  1985年   40篇
  1984年   27篇
  1983年   16篇
  1982年   20篇
  1981年   8篇
  1980年   23篇
  1979年   5篇
  1978年   4篇
  1977年   6篇
  1959年   11篇
  1951年   15篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
41.
Abstract

Breast cancer is a common malignancy with poor prognosis. Cancer cells are heterogeneous and cancer stem cells (CSCs) are primarily responsible for tumor relapse, treatment-resistance and metastasis, so for breast cancer stem cells (BCSCs). Diets are known to be associated with carcinogenesis. Food-derived polyphenols are able to attenuate the formation and virulence of BCSCs, implying that these compounds and their analogs might be promising agents for preventing breast cancer. In the present review, we summarized the origin and surface markers of BCSCs and possible mechanisms responsible for the inhibitory effects of polyphenols on BCSCs. The suppressive effects of common dietary polyphenols against BCSCs, such as curcumin, epigallocatechin gallate (EGCG) and related polyphenolic compounds were further discussed.  相似文献   
42.
43.
Lobster krill (Munida genus) represents an under‐valued crustacean frequently caught on European fishing banks. In this work, its sensory, microbiological and biochemical qualities were evaluated during chilled storage. Additionally, the effects of a prestorage antimelanosic treatment consisting of soaking in sodium metabisulphite (SMB) solutions at two different concentrations (0.25% and 0.75%) were also studied. SMB prestorage treatment provided lobster specimens that still exhibited acceptable sensory quality after 10 days of storage, while control specimens were unacceptable at that time. SMB treatment also resulted in a significant (P < 0.05) inhibition of microbial growth, mainly of Enterobacteriaceae, psychrotrophes and proteolytic bacteria. Low lipid oxidation levels were observed for all batches; however, a significantly higher (P < 0.05) retention of polyunsaturated fatty acids was found in SMB‐treated lobster, especially in the 0.75% SMB batch. The results presented here open the way to the potential commercialisation of currently under‐utilised lobster krill as a chilled product.  相似文献   
44.
In the present study, we report an eco-friendly and simple route to design and synthesize novel nanocomposite catalyst based on platinum nanoparticles anchored on binary support of graphitic carbon nitride (g-C3N4) and cobalt-metal-organic framework (ZIF-67). For this purpose, ZIF-67 was prepared by precipitation method and g-C3N4 was prepared through thermal polymerization method. Later, ZIF-67 and g-C3N4 were hybridized through sonication to get homogeneous g–C3N4–ZIF-67 nanocomposite support material. Platinum nanoparticles (PtNPs) were uniformly deposited on g–C3N4–ZIF-67 by an electrochemical method. The as-developed nanocatalyst was characterized by morphological, structural and electrochemical techniques. The electrocatalytic activity of PtNPs@g–C3N4–ZIF-67 nanocatalyst towards butanol oxidation was evaluated via CV, CA, LSV and EIS in an alkaline medium. Results revealed that the proposed catalyst showed greatly enhanced electrooxidation of butanol in terms of high magnificent current density, lower oxidation potential, excellent long-term stability, large surface area, low charge transfer resistance and less toxic ability. Enhanced catalytic performance of the proposed catalyst could be ascribed to the synergistic effect of g–C3N4–ZIF-67 nanocomposite and PtNPs. The PtNPs@g–C3N4–ZIF-67 catalyst holds promising potential applications to be used as an anodic electrocatalyst for the development of high-performance alkaline fuel cells.  相似文献   
45.
A series of anionic conjugated polyelectrolytes (CPEs) is synthesized based on poly(fluorene-co-phenylene) by varying the side-chain ionic density from two to six per repeat units (MPS2-TMA, MPS4-TMA, and MPS6-TMA). The effect of MPS2, 4, 6-TMA as interlayers on top of a hole-extraction layer of poly(bis(4-phenyl)-2,4,6-trimethylphenylamine (PTAA) is investigated in inverted perovskite solar cells (PeSCs). Owing to the improved wettability of perovskites on hydrophobic PTAA with the CPEs, the PeSCs with CPE interlayers demonstrate a significantly enhanced device performance, with negligible device-to-device dependence relative to the reference PeSC without CPEs. By increasing the ionic density in the MPS-TMA interlayers, the wetting, interfacial defect passivation, and crystal growth of the perovskites are significantly improved without increasing the series resistance of the PeSCs. In particular, the open-circuit voltage increases from 1.06 V for the PeSC with MPS2-TMA to 1.11 V for the PeSC with MPS6-TMA. The trap densities of the PeSCs with MPS2,4,6-TMA are further analyzed using frequency-dependent capacitance measurements. Finally, a large-area (1 cm2) PeSC is successfully fabricated with MPS6-TMA, showing a power conversion efficiency of 18.38% with negligible hysteresis and a stable power output under light soaking for 60 s.  相似文献   
46.
本文针对典型高温气冷堆乏燃料厂房在双发商用飞机撞击载荷下的响应及结构完整性开展研究,并探讨结构特性对撞击损伤的影响。对乏燃料厂房及飞机分别建立有限元模型,通过弹体-目标相互作用分析模拟了飞机撞击过程,综合IAEA与NRC的评价准则对乏燃料厂房在飞机撞击下的损伤程度进行评估。数值结果表明:厂房上对应于机身及发动机的撞击位置发生可接受的局部损伤;乏燃料贮存井墙体对于提高构筑物抗飞机撞击能力有重要作用。此外,构筑物外形对损伤有很大影响,圆柱形壳体的抗飞机撞击能力显著强于方形厂房,是核电厂厂房设计的优化方向之一。  相似文献   
47.
Here we report some recent biophysical issues on the preparation of solute-filled lipid vesicles and their relevance to the construction of “synthetic cells.” First, we introduce the “semi-synthetic minimal cells” as the liposome-based cell-like systems, which contain a minimal number of biomolecules required to display simple and complex biological functions. Next, we focus on recent aspects related to the construction of synthetic cells. Emphasis is given to the interplay between the methods of synthetic cell preparation and the physics of solute encapsulation. We briefly introduce the notion of structural and compositional “diversity” in synthetic cell populations.  相似文献   
48.
In this study we analyze the optoelectronic properties and structural characterization of hydrogenated polymorphous silicon thin films as a function of the deposition parameters. The films were grown by plasma enhanced chemical vapor deposition (PECVD) using a gas mixture of argon (Ar), hydrogen (H2) and dichlorosilane (SiH2Cl2). High-resolution transmission electron microscopy images and Raman measurements confirmed the existence of very different internal structures (crystalline fractions from 12% to 54%) depending on the growth parameters. Variations of as much as one order of magnitude were observed in both the photoconductivity and effective absorption coefficient between the samples deposited with different dichlorosilane/hydrogen flow rate ratios. The optical and transport properties of these films depend strongly on their structural characteristics, in particular the average size and densities of silicon nanocrystals embedded in the amorphous silicon matrix. From these results we propose an intrinsic polymorphous silicon bandgap grading thin film to be applied in a p–i–n junction solar cell structure. The different parts of the solar cell structure were proposed based on the experimental optoelectronic properties of the pm-Si:H thin films studied in this work.  相似文献   
49.
NdSrCo2O5+δ (NSCO) is a perovskite with an electrical conductivity of 1551.3 S cm−1 at 500 °C and 921.7 S cm−1 at 800 °C and has a metal-like temperature dependence. This perovskite is used as the cathode material for Ce0.8Gd0.2O2-δ (GDC)-supported microtubular solid oxide fuel cells (MT-SOFCs). The MT-SOFCs fabricated in this study consist of a bilayer anode, comprising a NiO–GDC composite layer and a NiO layer, and a NSCO–GDC composite cathode. Three cell designs with different outer tube diameters, GDC thicknesses, and NSCO/GDC ratios are designed. The MT-SOFC with an outer tube diameter of 1.86 mm, an electrolyte thickness of 180 μm, and a 5NSCO–5GDC composite cathode presents the best performance. The flexural strength of the aforementioned cell is 177 MPa, which is sufficient to confer mechanical integrity to the cell. Moreover, the ohmic and polarization resistance values of the cell are 0.22 and 0.09 Ω cm2 at 700 °C, respectively, and 0.15 and 0.03 Ω cm2 at 800 °C, respectively. These results indicate that the NSCO-GDC composite exhibits high electrochemical activity. The maximum power densities of the cell at 700 and 800 °C are 0.46 and 0.67 W cm−2, respectively, exceeding those of existing electrolyte-supported MT-SOFCs with similar electrolyte thicknesses.  相似文献   
50.
The electrode ionomer is a key factor that significantly affects the catalyst layer morphology and fuel cell performance. Herein, sulfonated poly(arylene ether sulfone)-based electrode ionomers with polymers of various molecular weights and alcohol/water mixtures were prepared, and those comprising the alcohol/water mixture showed a higher performance than the ones prepared using higher boiling solvents, such as dimethylacetamide; this is owing to the formation of the uniformly dispersed ionomer catalyst layer. The relation between ionomer molecular weight for the same polymer structure and the sulfonation degree was investigated. Because the chain length of polymer varies with molecular weight and chain entanglement degree, its molecular weight affects the electrode morphology. As the ionomer covered the catalyst, the agglomerates formed were of different morphologies according to their molecular weight, which could be deduced indirectly through dynamic light scattering and scanning electron microscopy. Additionally, the fuel cell performance was confirmed in the current-voltage curve.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号