首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   576篇
  免费   365篇
  国内免费   14篇
电工技术   20篇
综合类   8篇
化学工业   94篇
金属工艺   9篇
机械仪表   3篇
矿业工程   5篇
能源动力   60篇
轻工业   6篇
无线电   292篇
一般工业技术   453篇
冶金工业   3篇
自动化技术   2篇
  2024年   7篇
  2023年   71篇
  2022年   25篇
  2021年   63篇
  2020年   81篇
  2019年   94篇
  2018年   105篇
  2017年   93篇
  2016年   83篇
  2015年   71篇
  2014年   71篇
  2013年   43篇
  2012年   32篇
  2011年   26篇
  2010年   11篇
  2009年   21篇
  2008年   7篇
  2007年   9篇
  2006年   7篇
  2005年   8篇
  2004年   5篇
  2003年   6篇
  2002年   9篇
  2001年   3篇
  2000年   1篇
  1998年   1篇
  1951年   2篇
排序方式: 共有955条查询结果,搜索用时 15 毫秒
91.
92.
Fiber‐based supercapacitors (FSCs) possess great potential as an ideal type of power source for future weaveable/wearable electronics and electronic‐textiles. The performance of FSCs is, without doubt, primarily determined by the properties of fibrous electrodes. Carbonaceous fibers, e.g., commercial carbon fibers, newly developed graphene fibers, and carbon nanotube fibers, are deemed as promising materials for weaveable/wearable supercapacitors owing to their exotic properties including high tensile strength and robustness, excellent electrical conductivity, good flexibility, and environmental stability. Nevertheless, bare carbonaceous fiber normally exhibits low capacitance originating from electric double‐layer capacitance, which remains unsatisfactory for efficiently powering wearable and portable devices. Numerous efforts have been devoted to tailoring fiber properties by hybridizing pseudocapacitive materials, and impressive progress has been achieved thus far. Herein, the microstructures of pristine carbonaceous fibers are introduced in detail, and the recent advances in rational nano/microstructure design of their hybrids, which provides the feasibility to achieve the synergistic interaction between conductive agents and pseudocapacitive nanomaterials but are normally overlooked, are comprehensively reviewed. Besides, the challenges in developing high‐performance fibrous electrodes are also elaborately discussed.  相似文献   
93.
Fabrication of hierarchical nanosheet arrays of 1T phase of transition‐metal dichalcogenides is indeed a critical task, but it holds immense potential for energy storage. A single‐step strategy is employed for the fabrication of stable 1T‐MnxMo1–xS2–ySey and MoFe2S4–zSez hierarchical nanosheet arrays on carbon cloth as positive and negative electrodes, respectively. The flexible asymmetric supercapacitor constructed with these two electrodes exhibits an excellent electrochemical performance (energy density of ≈69 Wh kg?1 at a power density of 0.985 kW kg?1) with ultralong cyclic stability of ≈83.5% capacity retention, after 10 000 consecutive cycles. Co‐doping of the metal and nonmetal boosts the charge storage ability of the transition‐metal chalcogenides following enrichment in the metallic 1T phase, improvement in the surface area, and expansion in the interlayer spacing in tandem, which is the key focus of the present study. This study explicitly demonstrates the exponential enhancement of specific capacity of MoS2 following intercalation and doping of Mn and Se, and Fe2S3 following doping of Mo and Se could be an ideal direction for the fabrication of novel energy‐storage materials with high‐energy storage ability.  相似文献   
94.
The intrinsic properties of carbon‐based material and the voltage window of electrolyte are the two key barriers to restrict the energy density of carbon‐based supercapacitors (SCs). Herein, a cucurbit[6]uril‐derived nitrogen‐doped hierarchical porous carbon (CBCx) with unique pore structure characteristics is synthesized and successfully applied to construct SCs based on different electrolyte systems. Owing to narrow pore size distribution (0.5–4 nm), colossal ion‐accessible pore volume, prominent supermesopore volume, and reasonable heteroatom configuration, the CBCx‐based SCs demonstrate excellent electrochemical performances with high operating voltages in two distinct systems. The optimal SCs can output a maximum energy/power density of 18 Wh kg?1 (11.1 Wh L?1)/20 kW kg?1 (12.3 kW L?1) with an operating voltage of 1.2 V in potassium hydroxide aqueous electrolyte, as well as an ultralong cycle life of up to 50 000 cycles (0.046% decay per 100 cycles). Furthermore, the optimal SCs deliver an exceptionally high energy/power density of 95 Wh kg?1 (58.4 Wh L?1)/70 kW kg?1 (43 kW L?1) with an ultrahigh operating voltage of 3.5 V in 1‐ethyl‐3‐methylimidazolium tetrafluoroborate electrolyte. This work opens up a new application field for cucurbit[6]uril and provides an alternative avenue for optimizing the performances of carbon‐based materials for SCs.  相似文献   
95.
Tailored construction of advanced flexible supercapacitors (SCs) is of great importance to the development of high‐performance wearable modern electronics. Herein, a facile combined wet chemical method to fabricate novel mesoporous vanadium nitride (VN) composite arrays coupled with poly(3,4‐ethylenedioxythiophene) (PEDOT) as flexible electrodes for all‐solid‐state SCs is reported. The mesoporous VN nanosheets arrays prepared by the hydrothermal–nitridation method are composed of cross‐linked nanoparticles of 10–50 nm. To enhance electrochemical stability, the VN is further coupled with electrodeposited PEDOT shell to form high‐quality VN/PEDOT flexible arrays. Benefiting from high intrinsic reactivity and enhanced structural stability, the designed VN/PEDOT flexible arrays exhibit a high specific capacitance of 226.2 F g?1 at 1 A g?1 and an excellent cycle stability with 91.5% capacity retention after 5000 cycles at 10 A g?1. In addition, high energy/power density (48.36 Wh kg?1 at 2 A g?1 and 4 kW kg?1 at 5 A g?1) and notable cycling life (91.6% retention over 10 000 cycles) are also achieved in the assembled asymmetric flexible supercapacitor cell with commercial nickel–cobalt–aluminum ternary oxides cathode and VN/PEDOT anode. This research opens up a way for construction of advanced hybrid organic–inorganic electrodes for flexible energy storage.  相似文献   
96.
Crystalline high‐entropy ceramics (CHC), a new class of solids that contain five or more elemental species, have attracted increasing interest because of their unique structure and potential applications. Up to now, only a couple of CHCs (e.g., high‐entropy metal oxides and diborides) have been successfully synthesized. Here, a new strategy for preparing high‐entropy metal nitride (HEMN‐1) is proposed via a soft urea method assisted by mechanochemical synthesis. The as‐prepared HEMN‐1 possesses five highly dispersed metal components, including V, Cr, Nb, Mo, Zr, and simultaneously exhibits an interesting cubic crystal structure of metal nitrides. By taking advantage of these unique features, HEMN‐1 can function as a promising candidate for supercapacitor applications. A specific capacitance of 78 F g?1 is achieved at a scan rate of 100 mV s?1 in 1 m KOH. In addition, such a facile synthetic strategy can be further extended to the fabrication of other types of HEMNs, paving the way for the synthesis of HEMNs with attractive properties for task‐specific applications.  相似文献   
97.
The development of fully foldable energy storage devices is a major science and engineering challenge, but one that must be overcome if next‐generation foldable or wearable electronic devices are to be realized. To overcome this challenge, it is necessary to develop new electrically conductive materials that exhibit superflexibility and can be folded or crumpled without plastic deformation or damage. Herein, a graphene film with engineered microvoids is prepared by reduction (under confinement) of its precursor graphene oxide film. The resultant porous graphene film can be single folded, double folded, and even crumpled, but springs back to its original shape without yielding or plastic deformation akin to an elastomeric scaffold after the applied stress is removed. Even after thermal annealing at ≈1300 °C, the folding performance of the porous graphene film is not compromised and the thermally annealed film exhibits complete foldability even in liquid nitrogen. A solid‐state foldable supercapacitor is demonstrated with the porous graphene film as the device electrode. The capacitance performance is nearly identical after 2000 cycles of single‐folding followed by another 2000 cycles of double folding.  相似文献   
98.
The insertion/deinsertion mechanism enables plenty of charge‐storage sites in the bulk phase to be accessible to intercalated ions, giving rise to at least one more order of magnitude higher energy density than the adsorption/desorption mechanism. However, the sluggish ion diffusion in the bulk phase leads to several orders of magnitude slower charge‐transport kinetics. An ideal energy‐storage device should possess high power density and large energy density simultaneously. Herein, surface‐modified Fe2O3 quantum dots anchored on graphene nanosheets are developed and exhibit greatly enhanced pseudocapacitance via fast dual‐ion‐involved redox reactions with both large specific capacity and fast charge/discharge capability. By using an aqueous Na2SO3 electrolyte, the oxygen‐vacancy‐tuned Fe2O3 surface greatly enhances the absorption of SO32? anions that majorly increase the surface pseudocapacitance. Significantly, the Fe2O3‐based electrode delivers a high specific capacity of 749 C g?1 at 5 mV s?1 and retains 290 C g?1 at an ultrahigh scan rate of 3.2 V s?1. With a novel dual‐electrolyte design, a 2 V Fe2O3/Na2SO3//MnO2/Na2SO4 asymmetric supercapacitor is constructed, delivering a high energy density of 75 W h kg?1 at a power density of 3125 W kg?1.  相似文献   
99.
Self‐powered charging systems in conjunction with renewable energy conversion and storage devices have attracted promising attention in recent years. In this work, a prolific approach to design a wind/solar‐powered rechargeable high‐energy density pouch‐type hybrid supercapacitor (HSC) is proposed. The pouch‐type HSC is fabricated by engineering nature‐inspired nanosliver (nano‐Ag) decorated Ni0.67Co0.33S forest‐like nanostructures on Ni foam (nano‐Ag@NCS FNs/Ni foam) as a battery‐type electrode and porous activated carbon as a capacitive‐type electrode. Initially, the core–shell‐like NCS FNs/Ni foam is prepared via a single‐step wet‐chemical method, followed by a light‐induced growth of nano‐Ag onto it for enhancing the conductivity of the composite. Utilizing the synergistic effects of forest‐like nano‐Ag@NCS FNs/Ni foam as a composite electrode, the fabricated device shows a maximum capacitance of 1104.14 mF cm?2 at a current density of 5 mA cm?2 and it stores superior energy and power densities of 0.36 mWh cm?2 and 27.22 mW cm?2, respectively along with good cycling stability, which are higher than most of previous reports. The high‐energy storage capability of HSCs is further connected to wind fans and solar cells to harvest renewable energy. The wind/solar charged HSCs can effectively operate various electronic devices for a long time, enlightening its potency for the development of sustainable energy systems.  相似文献   
100.
Fiber‐shaped supercapacitors (FSCs) are promising energy storage solutions for powering miniaturized or wearable electronics. However, the scalable fabrication of fiber electrodes with high electrical conductivity and excellent energy storage performance for use in FSCs remains a challenge. Here, an easily scalable one‐step wet‐spinning approach is reported to fabricate highly conductive fibers using hybrid formulations of Ti3C2Tx MXene nanosheets and poly(3,4‐ethylenedioxythiophene):polystyrene sulfonate. This approach produces fibers with a record conductivity of ≈1489 S cm?1, which is about five times higher than other reported Ti3C2Tx MXene‐based fibers (up to ≈290 S cm?1). The hybrid fiber at ≈70 wt% MXene shows a high volumetric capacitance (≈614.5 F cm?3 at 5 mV s?1) and an excellent rate performance (≈375.2 F cm?3 at 1000 mV s?1). When assembled into a free‐standing FSC, the energy and power densities of the device reach ≈7.13 Wh cm?3 and ≈8249 mW cm?3, respectively. The excellent strength and flexibility of the hybrid fibers allow them to be wrapped on a silicone elastomer fiber to achieve an elastic FSC with 96% capacitance retention when cyclically stretched to 100% strain. This work demonstrates the potential of MXene‐based fiber electrodes and their scalable production for fiber‐based energy storage applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号