首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   200篇
  免费   16篇
  国内免费   6篇
综合类   8篇
化学工业   55篇
金属工艺   1篇
机械仪表   3篇
建筑科学   1篇
轻工业   152篇
自动化技术   2篇
  2024年   2篇
  2023年   2篇
  2022年   7篇
  2021年   8篇
  2020年   19篇
  2019年   8篇
  2018年   4篇
  2017年   13篇
  2016年   7篇
  2015年   7篇
  2014年   11篇
  2013年   12篇
  2012年   17篇
  2011年   17篇
  2010年   7篇
  2009年   7篇
  2008年   7篇
  2007年   12篇
  2006年   10篇
  2005年   7篇
  2004年   6篇
  2003年   4篇
  2002年   5篇
  2001年   3篇
  2000年   5篇
  1998年   2篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1992年   4篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1987年   1篇
排序方式: 共有222条查询结果,搜索用时 15 毫秒
11.
六月霜提取物清除O-·2和OH·自由基的体外实验研究   总被引:8,自引:3,他引:8  
用氮蓝四唑(NBT)光还原法,对六月霜中提取物清除超氧离子自由基O-·2的效果进行了测定。结果显示,六月霜提取物对超氧离子自由基有较强的清除效果,清除效果与提取物中黄酮浓度有关,当黄酮浓度达到一定值时,对O-·2的清除效果可高达88.41%。提取物与抗坏血酸(VC)进行了对照实验,结果显示其对O-·2的清除能力比VC高。六月霜提取物在w-Cu2+-H2O2体系中,对OH·自由基的清除效果的研究显示,最高清除率为84.02%。  相似文献   
12.
为改善皮革的特殊气味并提升其应用性能,该研究以玉米醇溶蛋白(Zein)、艾叶香精(AAE)以及普兰尼克F127等为原料,通过反溶剂法制备缓香型玉米醇溶蛋白微胶囊(AAE@ZMs)乳液,再将AAE@ZMs乳液与成膜剂己内酰胺改性酪素复配后应用于皮革涂饰。结果表明,Zein与F127、AAE和戊二醛通过化学交联和氢键相互作用,同时F127和AAE可使Zein中的氨基酸重排并发生荧光猝灭;制得的AAE@ZMs乳液中微胶囊平均粒径约为298.6 nm且具有较好的分散性和稳定性;AAE@ZMs的包覆率和负载率分别可以达到73.2%和5.8%,在良溶剂中释放120 h时的AAE累积释放率约为83.1%。将AAE@ZMs应用于皮革涂饰后,涂饰革样中AAE的释放周期为6周,对金黄色葡萄球菌和大肠杆菌均具有较好的抑制效果,同时涂饰革样还展现出较好的机械性能。  相似文献   
13.
The chemical composition of the essential oil isolated from the aerial parts of Artemisia campestris from Algeria and its antifungal activity against 10 filamentous fungal strains were investigated. The A. campestris essential oil was obtained in a yield of 0.71% (v/w). The major constituents of the oil were α-pinene (18.65%), β-pinene (16.78%), β-myrcene (17.34%), and germacrene D (10.34%). Our study showed that A. campestris essential oil was a potent antifungal agent against some pathogenic fungal species. Fusarium graminearum was the most sensitive strain to A. campestris essential oil with minimal inhibitory concentration and minimal fungicidal concentration values of 1.25 µL/mL (v/v). The essential oil also exhibited a strong fungicidal activity against the tested fungi, except for Penicillium citrinum, P. viridicatum, and Aspergillus niger (MFC >20 µL/mL). Our findings suggested the application of A. campestris essential oil as a biofungicide in order to reduce the dependence on synthetic fungicides and ensure food safety and quality.  相似文献   
14.
黄花蒿提取物的杀虫活性   总被引:27,自引:0,他引:27  
黄花蒿精油对米象、玉米象、绿豆象和蚕豆象等4种仓库害虫具有很强的熏杀活性,其甲醇和乙醇提取物对小菜蛾、菜青虫、大菜粉蝶、银纹夜蛾和斜纹夜娥幼虫也具有一定的杀虫活性。  相似文献   
15.
An in vitro study was performed to determine the potential application of tissue culture in determining allelopathic potentialof Artemisia princeps var.Orientalis (wormwood). Aqueous extracts and volatile substances ofA. princeps var.Orientalis were tested to determine their effects on callus induction and growth of several tested species. Extracts of 5%A. princeps var.Orientalis caused some reduction in concentration, induction, and growth of callus, although they looked normal, whereas the expiants of most receptor plants did not develop callus at higher concentration. Lettuce andEclipta prostrata were the most sensitive species, andA. princeps var.Orientalis was affected by its own extracts. The growth of calluses in MS 121 medium treated with essential oil ofA. princeps var.Orientalis was inhibited, and the degree of inhibition was proportional to the concentration of the essential oil.  相似文献   
16.
Field and laboratory studies were conducted to examine the differential phytotoxicity of residues ofArtemisia princeps var.orientalis (wormwood) using various plants as test species. Seedling elongation and dry weights of receptor plants were inversely proportional to the concentration and incubation time of dry leaves ofA. princeps var.orientalis in vermiculite. In seedling growth tests with abandoned field soils (control) and soil underneath wormwood plants (test), the elongation, dry weight, and caloric content of seedlings grown in the soil from under wormwood plants were severely inhibited, thereby suggesting that certain growth inhibitors were released from wormwood and the inhibitor remained in the soil.  相似文献   
17.
Several volatile allelochemicals were identified and characterized from fresh leaf tissue of three distinct populations of the invasive perennial weed, mugwort (Artemisia vulgaris). A unique bioassay was used to demonstrate the release of volatile allelochemicals from leaf tissues. Leaf volatiles were trapped and analyzed via gas chromatography coupled with mass spectrometry. Some of the components identified were terpenes, including camphor, eucalyptol, -pinene, and -pinene. Those commercially available were tested individually to determine their phytotoxicity. Concentrations of detectable volatiles differed in both absolute and relative proportions among the mugwort populations. The three mugwort populations consisted of a taller, highly branched population (ITH-1); a shorter, lesser-branched population (ITH-2) (both grown from rhizome fragments from managed landscapes); and a population grown from seed with lobed leaves (VT). Considerable interspecific variation existed in leaf morphology and leaf surface chemistry. Bioassays revealed that none of the individual monoterpenes could account for the observed phytotoxicity imparted by total leaf volatiles, suggesting a synergistic effect or activity of a component not tested. Despite inability to detect a single dominant phytotoxic compound, decreases in total terpene concentration with increase in leaf age correlated with decreases in phytotoxicity. The presence of bioactive terpenoids in leaf surface chemistry of younger mugwort tissue suggests a potential role for terpenoids in mugwort establishment and proliferation in introduced habitats.  相似文献   
18.
The objective of the work was to optimize the extraction of wormwood oil by supercritical fluid extraction (SFE) of growth-controlled plant material. Different extraction conditions, two growth techniques and various crops were tested and the evolution of the extracted oil composition was screened chromatographically. A comparison with conventional techniques such as hydrodistillation (HD) or organic solvent extraction (OSE) was also presented. Particularly, six CO2 densities ranging from 285.0 kg/m3 to 819.5 kg/m3 were studied in the range of 9.0-18.0 MPa and 40-50 °C. A systematic study was carried out with plant material from 2005, while SFE of 2006, 2008 and aeroponically grown crops was performed for comparative purposes. The effect of ethanol as a modifier of the supercritical fluid extraction was also studied. The major compounds found in the SFE extracts as well as in the HD essential oils were Z-epoxyocimene, chrysanthenol and chrysanthenyl acetate. A model based on mass transfer equations, the Sovová model, was successfully applied to correlate the experimental data.  相似文献   
19.
应用全二维气相色谱飞行时间质谱分析了艾叶浸膏的挥发性成分,共检测到210种物质,鉴定出65种匹配度较高的物质,主要为萜烯类物质及其氧化物。应用热失重技术(TG)分析了艾叶浸膏的热失重行为,TG曲线显示艾叶浸膏主要失重区域在145~643℃,其中,145~465℃主要是挥发性及半挥发性物质的挥发,而在465~643℃发生复杂裂解反应。通过热裂解技术分析了艾叶浸膏在不同温度下的裂解产物,结果表明,艾叶浸膏中的挥发性成分包括萜烯类、醇类、脂肪烃类在300℃以下主要是通过蒸馏作用直接转移,而随着裂解温度升高至600~900℃,产生了呋喃等增香物质,同时也生成了羰基化合物、萘、茚等有害物质。  相似文献   
20.
We investigated the chemical composition and phytotoxicity of the essential oil extracted from leaves of Artemisia scoparia Waldst. et Kit. (red stem wormwood, Asteraceae). GC/GC-MS analyses revealed 33 chemical constituents representing 99.83% of the oil. The oil, in general, was rich in monoterpenes that constitute 71.6%, with β-myrcene (29.27%) as the major constituent followed by (+)-limonene (13.3%), (Z)-β-ocimene (13.37%), and γ-terpinene (9.51%). The oil and β-myrcene were evaluated in a dose–response bioassay under laboratory conditions for phytotoxicity against three weeds—Avena fatua, Cyperus rotundus, and Phalaris minor. A significant reduction in germination, seedling growth, and dry matter accumulation was observed in the test weeds. At the lowest treatment of 0.07 mg/ml Artemisia oil, germination was reduced by 39%, 19%, and 10.6% in C. rotundus, P. minor, and A. fatua, respectively. However, the inhibitory effect of β-myrcene was less. In general, a dose-dependent effect was observed and the growth declined with increasing concentration. Among the three weeds, the inhibitory effect was greatest on C. rotundus, so it was selected for further studies. We explored the explanation for observed growth inhibition in terms of reactive oxygen species (ROS: lipid peroxidation, membrane integrity, and amounts of conjugated dienes and hydrogen peroxide)-induced oxidative stress. Exposure of C. rotundus to Artemisia oil or β-myrcene enhanced solute leakage, indicating membrane disintegration. There were increased levels of malondialdehyde and hydrogen peroxide, indicating lipid peroxidation and induction of oxidative stress. We conclude that Artemisia oil inhibits plant root growth through generation of ROS-induced oxidative damage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号