首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   137553篇
  免费   10554篇
  国内免费   7970篇
电工技术   4980篇
技术理论   2篇
综合类   8098篇
化学工业   39570篇
金属工艺   13631篇
机械仪表   4511篇
建筑科学   3106篇
矿业工程   2003篇
能源动力   5608篇
轻工业   8323篇
水利工程   951篇
石油天然气   5028篇
武器工业   814篇
无线电   13485篇
一般工业技术   20697篇
冶金工业   5523篇
原子能技术   1985篇
自动化技术   17762篇
  2024年   307篇
  2023年   2021篇
  2022年   3419篇
  2021年   4600篇
  2020年   3472篇
  2019年   3297篇
  2018年   3024篇
  2017年   3773篇
  2016年   4341篇
  2015年   4544篇
  2014年   6674篇
  2013年   7445篇
  2012年   8473篇
  2011年   11772篇
  2010年   9196篇
  2009年   10410篇
  2008年   8960篇
  2007年   10008篇
  2006年   8985篇
  2005年   7248篇
  2004年   6168篇
  2003年   5533篇
  2002年   4580篇
  2001年   3181篇
  2000年   2779篇
  1999年   2208篇
  1998年   1713篇
  1997年   1382篇
  1996年   1224篇
  1995年   998篇
  1994年   925篇
  1993年   720篇
  1992年   569篇
  1991年   436篇
  1990年   375篇
  1989年   291篇
  1988年   178篇
  1987年   126篇
  1986年   128篇
  1985年   111篇
  1984年   86篇
  1983年   55篇
  1982年   65篇
  1981年   61篇
  1980年   51篇
  1979年   37篇
  1978年   17篇
  1977年   22篇
  1975年   20篇
  1951年   23篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
151.
Class I hydrophobin Vmh2, a peculiar surface active and versatile fungal protein, is known to self‐assemble into chemically stable amphiphilic films, to be able to change wettability of surfaces, and to strongly adsorb other proteins. Herein, a fast, highly homogeneous and efficient glass functionalization by spontaneous self‐assembling of Vmh2 at liquid–solid interfaces is achieved (in 2 min). The Vmh2‐coated glass slides are proven to immobilize not only proteins but also nanomaterials such as graphene oxide (GO) and quantum dots (QDs). As models, bovine serum albumin labeled with Alexa 555 fluorophore, anti‐immunoglobulin G antibodies, and cadmium telluride QDs are patterned in a microarray fashion in order to demonstrate functionality, reproducibility, and versatility of the proposed substrate. Additionally, a GO layer is effectively and homogeneously self‐assembled onto the studied functionalized surface. This approach offers a quick and simple alternative to immobilize nanomaterials and proteins, which is appealing for new bioanalytical and nanobioenabled applications.  相似文献   
152.
The present study focuses on the sintering of silicon carbide-based ceramics (SiC) by liquid phase sintering (LPS) followed by characterization of the produced ceramics. AlN/Re2O3 mixtures were used as additives in the LPS process. In the first step, the LPS-SiC materials were produced in a graphite resistance furnace in the form of discs at different temperatures. The conditions with the best results regarding real density and relative density were taken as reference for sintering in the form of prismatic bars. In the second step, these samples were evaluated regarding fracture toughness (KIC), by the Single Edge V Notch Beam – SEVNB – method, and flexural strength. KIC behavior was evaluated according to the depth and curvature radius of the notches. Reliable KIC values were presented when the ceramic displayed a small curvature radius at the notch tip. When the radius was large, it did not maintain the square root singularity of the notch tip. Tests were carried out to determine KIC values in atmospheric air and water. KIC results were lower in water than air, with a decrease ranging between 2.56% and 11.26%. The observations indicated a direct grain size correlation between KIC values and fracture strength of the SiC ceramics.  相似文献   
153.
In this paper, debonding phenomena between carbon fiber reinforced polymer (CFRP) strips and masonry support were investigated on the basis of single-lap shear tests, considering different dimensions of the bond length. To capture the post-peak response of the CFRP–masonry joint, the slip between the support and the reinforcement strip was controlled using a clip gauge positioned at the end of the reinforcement. The tests were simulated by means of a finite element model able to capture the post-peak snap-back behavior due to the failure process. The numerical model is based on zero-thickness interface elements and on a proper non-linear cohesive law. The comparison between experimental and numerical results was performed in terms of overall response, measured by both the machine stroke and the clip gauge positioned at the free end of the reinforcement. The cases of effective bond length greater and lesser than the minimum anchorage length, suggested by the CNR Italian recommendation, were considered.  相似文献   
154.
Drop-tube processing was used to rapidly solidify droplets of Ni64.7Fe10Si25.3 and Ni59.7Fe15Si25.3 alloys. In the larger droplets, and therefore at low cooling rates, only two phases, γ-Ni31Si12 and β1-Ni3Si were observed. Conversely, in the smaller droplets, and therefore at higher cooling rates, the metastable phase Ni25Si9 was also observed. The critical cooling rate for the formation of Ni25Si9 was estimated as 5 × 103 K s−1. SEM and TEM analysis reveals three typical microstructures: (I) a regular structure, comprising single-phase γ-Ni31Si12 and a eutectic structure between γ-Ni31Si12 and β1-Ni3Si; (II) a refined lamellar structure with a lamellar spacing <50 nm comprising γ-Ni31Si12 and β1-Ni3Si; (III) an anomalous structure with a matrix of Ni25Si9 and only a very small proportion of a second, and as yet unidentified, phase. These results indicate that there is an extended stability field for Ni25Si9 in the Ni-rich part of the Ni–Fe–Si ternary system in comparison to the Ni–Si binary system. With an increase of cooling rate, an increasing fraction of small droplets experience high undercoolings and, therefore, can be undercooled into the Ni25Si9 stability field forming droplets consisting of only the anomalous structure (III). The Fe atoms are found to occupy different substitutional sites in different phase, i.e. Fe substitutes for Ni in the γ phase and Si in the L121) phase respectively.  相似文献   
155.
Structurally stable β-Ca3(PO4)2/t-ZrO2 composite mixtures with the aid of Dy3+ stabilizer were accomplished at 1500°C. The precursors comprising Ca2+, P5+, Zr4+, and Dy3+ have been varied to obtain five different combinations. The results revealed the fact that complete phase transformation of calcium-deficient apatite to β-Ca3(PO4)2 occurred only at 1300°C, whereas the evidence of t-ZrO2 crystallization is obvious at 900°C. The dual occupancy of Dy3+ at β-Ca3(PO4)2 and t-ZrO2 structures was evident; however, Dy3+ initially prefers to occupy β-Ca3(PO4)2 lattice until its saturation limit and thereafter accommodates at the lattice site of ZrO2. The typical absorption and emission behavior of Dy3+ were noticed in all the systems and, moreover, the surrounding symmetry of Dy3+ domains has been determined from the luminescence study. All the systems ensured paramagnetic response that is generally contributed by the presence of Dy3+. A gradual increment in the phase content of t-ZrO2 in the composite mixtures ensured a significant improvement in the hardness and Young's modulus of the investigated compositions.  相似文献   
156.
《云南化工》2018,(12):38-39
我国油田油井生产中采油井管柱腐蚀现象十分普遍,所以在注CO_2驱进行开采过程中要进行采出水的质量分析。对现阶段的油田生产腐蚀及防腐技术进行论述,提出相对应的防腐措施,进一步为油田生产作业提高产量。  相似文献   
157.
Static stresses analysis of carbon nano-tube reinforced composite (CNTRC) cylinder made of poly-vinylidene fluoride (PVDF) is investigated in this study. Non-axisymmetric thermo-mechanical loads are applied on cylinder in presence of uniform longitudinal magnetic field and radial electric field. The surrounded elastic medium is modeled by Pasternak foundation because of its advantages to the Winkler type. Distribution of radial, circumferential and effective stresses, temperature field and electric displacements in CNTRC cylinder are determined based on Mori–Tanaka theory. The detailed parametric study is conducted, focusing on the remarkable effects of magnetic field intensity, elastic medium, angle orientation and volume fraction of carbon nano-tubes (CNTs) on distribution of effective stress. Results demonstrated that fatigue life of CNTRC cylinder will be significantly dependent on magnetic intensity, angle orientation and volume fraction of CNTs. Results of this research can be used for optimum design of thick-walled cylinders under multi-physical fields.  相似文献   
158.
针对现代消费类电子产品快速更新换代的现状, 介绍了该类产品的自动化生产线成组技术,阐述了通过度量消费类电子产品相似性和派生性特征,对产线进行成组编码的原理,研究产线工位单元的建模方法,描述了建模内容,并通过有无装载板的产线结构,论述了产线成组编码集成的途径和方法.  相似文献   
159.
This paper deals with the investigation of the effect of hygrothermal conditions on the bending of nanoplates using Levy type solution model employing the state-space concept. The nanoplates are assumed to be subjected to a hygrothermal environment. The two-unknown function plate theory is used to derive the governing differential equations on the basis of Eringen's nonlocal elasticity theory. The governing equations contain the small scale effect as well as hygrothermal and mechanical effects. These equations are converted into a set of first-order linear ordinary differential equations with constant coefficients. Analytical solution of bending response for nanoplates under combinations of simply supported, clamped and free boundary conditions is obtained. Comparison of the results with those being in the open literature is made. The influences played by small scale parameter, temperature rise, the degree of moisture concentration, boundary conditions, plate aspect ratio and side-to-thickness ratio are studied.  相似文献   
160.
Mg–Zn–Ca alloys are representative Mg alloys with high formability at room temperature. Their high formability is thought to be related to slip, twinning, and recrystallization of the alloys, but the detailed mechanisms have not yet been clarified. To enable atomistic simulations for investigating those behaviors, an interatomic potential for the Mg–Zn–Ca ternary system was developed. The development was based on the second nearest-neighbor modified embedded-atom method formalism, combining previously developed Mg–Zn and Mg–Ca potentials with the newly developed Zn–Ca binary potential. The Zn–Ca and Mg–Zn–Ca potentials reproduce structural, elastic, and thermodynamic properties of compounds and solution phases of relevant alloy systems in reasonable agreement with experimental data, first-principles and CALPHAD calculations. The applicability of the developed potentials is demonstrated through calculations of the effects of Zn and Ca solutes on the generalized stacking fault energy for various slip systems, segregation energy on twin boundaries, and volumetric misfit strain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号