首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   174篇
  免费   6篇
化学工业   1篇
轻工业   176篇
石油天然气   1篇
一般工业技术   1篇
自动化技术   1篇
  2023年   1篇
  2022年   8篇
  2021年   7篇
  2020年   2篇
  2019年   3篇
  2018年   7篇
  2017年   9篇
  2015年   1篇
  2014年   13篇
  2013年   7篇
  2012年   1篇
  2011年   7篇
  2010年   3篇
  2009年   9篇
  2008年   9篇
  2007年   15篇
  2006年   15篇
  2005年   13篇
  2004年   12篇
  2003年   6篇
  2002年   7篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   4篇
  1994年   7篇
  1993年   2篇
  1992年   3篇
排序方式: 共有180条查询结果,搜索用时 15 毫秒
81.
ABSTRACT: Meltability of different brands of Cheddar and Mozzarella cheeses was determined with a novel computer vision method as well as with 2 traditional methods, that is, the Arnott and Schreiber tests. Correlation between the results of these methods was analysed and it showed that the meltability determined with a computer vision system was significantly (P < 0.0001) interrelated with the Arnott (R2= 0.69) and Schreiber (R2= 0.88) meltabilities. The computer vision method provided an accurate quantitative account of the physical changes in cheese during melting, and thus was capable of revealing meltability differences of cheese that were difficult to distinguish by the traditional methods. The new approach was also applicable to a wide range of cheeses.  相似文献   
82.
Preacidification of milk for cheese making may have a beneficial impact on increasing proteolysis during cheese aging. Unlike other acids, CO(2) can easily be removed from whey. The objectives of this work were to determine the effect of milk preacidification on Cheddar cheese composition, the recovery of individual milk components, and yield. Carbon dioxide was injected inline after the cooling section of the pasteurizer. Cheeses with and without added CO(2) were made simultaneously from the same batch of milk. This procedure was replicated 3 times. Carbon dioxide in the cheese milk was about 1600 ppm, which resulted in a milk pH of about 5.9 at 31 degrees C. The starter culture and coagulant addition rates were the same for both the CO(2) treatment and the control. The whey pH at draining of the CO(2) treatment was lower than the control. Total make time was shorter for the CO(2) treatment compared with the control. Cheese manufactured from milk acidified with CO(2) retained less of the total calcium and fat than the control cheese. The higher fat loss was primarily in the whey at draining. Preacidification with CO(2) did not alter the crude protein recovery in the cheese. The CO(2) treatment resulted in a higher added salt recovery in the cheese and produced a cheese that contained too much salt. Considering the higher added salt retention, the salt application rate could be lowered to achieve a typical cheese salt content. Cheese yield efficiency of the CO(2) treated milk was 4.4% lower than the control due to fat loss. Future work will focus on modifying the make procedure to achieve a normal fat loss into the whey when CO(2) is added to milk.  相似文献   
83.
84.
The effect of cycled high pressure treatment of milk on the yield, sensory, and microbiological quality of Cheddar cheese was investigated. Cheddar cheeses were made from pasteurized, raw, or pressure treated milk according to traditional methods. Flavor scores from trained dairy judges were not different for pasteurized and pressurized milk cheeses (P≤0.05). Percent moisture and wet weight yields of pressure treated milk cheeses were higher than pasteurized or raw milk cheeses (P≤0.05). Microbiological quality of pressurized milk cheeses was comparable to pasteurized milk cheeses. Texture defects were present in pressurized milk cheeses and were attributed to excess moisture. High pressure treatment of milk shows promise as an alternative to heat pasteurization prior to cheesemaking.  相似文献   
85.
The objective of this study was to compare the effects of vacuum-condensed (CM) and ultrafiltered (UF) milk on some compositional and functional properties of Cheddar cheese. Five treatments were designed to have 2 levels of concentration (4.5 and 6.0% protein) from vacuum-condensed milk (CM1 and CM2) and ultrafiltered milk (UF1 and UF2) along with a 3.2% protein control. The samples were analyzed for fat, protein, ash, calcium, and salt contents at 1 wk. Moisture content, soluble protein, meltability, sodium dodecyl sulfate-PAGE, and counts of lactic acid bacteria and nonstarter lactic acid bacteria were performed on samples at 1, 18, and 30 wk. At 1 wk, the moisture content ranged from 39.2 (control) to 36.5% (UF2). Fat content ranged from 31.5 to 32.4% with no significant differences among treatments, and salt content ranged from 1.38 to 1.83% with significant differences. Calcium content was higher in UF cheeses than in CM cheeses followed by control, and it increased with protein content in cheese milk. Ultrafiltered milk produced cheese with higher protein content than CM milk. The soluble protein content of all cheeses increased during 30 wk of ripening. Condensed milk cheeses exhibited a higher level of proteolysis than UF cheeses. Sodium dodecyl sulfate-PAGE showed retarded proteolysis with increase in level of concentration. The breakdown of alphas1- casein and alphas1-I-casein fractions was highest in the control and decreased with increase in protein content of cheese milk, with UF2 being the lowest. There was no significant degradation of beta-casein. Overall increase in proteolytic products was the highest in control, and it decreased with increase in protein content of cheese milk. No significant differences in the counts of lactic starters or nonstarter lactic acid bacteria were observed. Extent as well as method of concentration influenced the melting characteristics of the cheeses. Melting was greatest in the control cheeses and least in cheese made from condensed milk and decreased with increasing level of milk protein concentration. Vacuum condensing and ultrafiltration resulted in Cheddar cheeses of distinctly different quality. Although both methods have their advantages and disadvantages, the selection of the right method would depend upon the objective of the manufacturer and intended use of the cheese.  相似文献   
86.
The evolution of free fatty acids (FFA) was monitored over 168 d of ripening in Cheddar cheeses manufactured from good quality raw milk (RM), thermized milk (TM; 65°C × 15 s), and pasteurized milk (PM; 72°C × 15 s). Heat treatment of the milk reduced the level and diversity of raw milk microflora and extensively or wholly inactivated lipoprotein lipase (LPL) activity. Indigenous milk enzymes or proteases from RM microflora influenced secondary proteolysis in TM and RM cheeses. Differences in FFA in the RM, TM, and PM influenced the levels of FFA in the subsequent cheeses at 1 d, despite significant losses of FFA to the whey during manufacture. Starter esterases appear to be the main contributors of lipolysis in all cheeses, with LPL contributing during production and ripening in RM and, to a lesser extent, in TM cheeses. Indigenous milk microflora and nonstarter lactic acid bacteria appear to have a minor contribution to lipolysis particularly in PM cheeses. Lipolytic activity of starter esterases, LPL, and indigenous raw milk microflora appeared to be limited by substrate accessibility or environmental conditions over ripening.  相似文献   
87.
Five batches of Cheddar cheese were manufactured containing different levels of isomaltooligosaccharide (IMO) and a probiotic strain of Lactobacillus rhamnosus to study the effect of IMO on the survival of starter lactococci and probiotic micro‐organisms, on proteolytic patterns, cheese composition and sensory properties. The cheese was exposed to conditions simulating those found in the gastrointestinal tract to evaluate the survival of Lb. rhamnosus. Results demonstrated that the addition of Lb. rhamnosus and IMO did not affect the main compositional variables of Cheddar cheese. The counts of starter culture and probiotic organisms increased in cheese which contained Isomaltooligosaccharide (Batches 3, 4 and 5) more than in the control (Batches 1 and 2) during the fermentation. The probiotic counts in fresh cheese (B‐4) was 9.23 log10 cfu/g which was more than one log cycle greater than in the control (B‐2). The probiotic counts remained above 8 log10 cfu/g at the end of the manufacturing process. Primary proteolysis was not affected by the addition of probiotic bacteria and IMO, but the level of secondary proteolysis was slightly higher compared with the control group. The addition of IMO improved the texture and sensory quality of the cheese and the probiotic bacterium had the same effect. Under conditions that simulated the gastrointestinal tract, the probiotic bacteria in cheese (B‐4) exhibited good survival and remained above the recommended 6–7 log10 cfu/g.  相似文献   
88.
Powder X-ray diffraction has been used for decades to identify crystals of calcium lactate pentahydrate in Cheddar cheese. According to this method, diffraction patterns are generated from a powdered sample of the crystals and compared with reference cards within a database that contains the diffraction patterns of known crystals. During a preliminary study of crystals harvested from various Cheddar cheese samples, we observed 2 slightly different but distinct diffraction patterns that suggested that calcium lactate pentahydrate may be present in 2 different crystalline forms. We hypothesized that the 2 diffraction patterns corresponded to 2 enantiomeric forms of calcium lactate pentahydrate (l- and dl-) that are believed to occur in Cheddar cheese, based on previous studies involving enzymatic analyses of the lactate enantiomers in crystals obtained from Cheddar cheeses. However, the powder X-ray diffraction database currently contains only one reference diffraction card under the title “calcium lactate pentahydrate.” To resolve this apparent gap in the powder X-ray diffraction database, we generated diffraction patterns from reagent-grade calcium l-lactate pentahydrate and laboratory-synthesized calcium dl-lactate pentahydrate. From the resulting diffraction patterns we determined that the existing reference diffraction card corresponds to calcium dl-lactate pentahydrate and that the other form of calcium lactate pentahydrate observed in cheese crystals corresponds to calcium l-lactate pentahydrate. Therefore, this report presents detailed data from the 2 diffraction patterns, which may be used to prepare 2 reference diffraction cards that differentiate calcium l-lactate pentahydrate from calcium dl-lactate pentahydrate. Furthermore, we collected crystals from the exteriors and interiors of Cheddar cheeses to demonstrate the ability of powder X-ray diffraction to differentiate between the 2 forms of calcium lactate pentahydrate crystals in Cheddar cheeses. Powder X-ray diffraction results were validated using enzymatic assays for lactate enantiomers. These results demonstrated that powder X-ray diffraction can be used as a diagnostic tool to quickly identify different forms of calcium lactate pentahydrate that may occur in Cheddar cheese.  相似文献   
89.
Normally, reduced-fat Cheddar cheese is made by removal of fat from milk prior to cheese making. Typical aged flavor may not develop when 50% reduced-fat Cheddar cheese is produced by this approach. Moreover, the texture of the reduced-fat cheeses produced by the current method may often be hard and rubbery. Previous researchers have demonstrated that aged Cheddar cheese flavor intensity resides in the water-soluble fraction. Therefore, we investigated the feasibility of fat removal after the aging of Cheddar cheese. We hypothesized the typical aged cheese flavor would remain with the cheese following fat removal. A physical process for the removal of fat from full-fat aged Cheddar cheese was developed. The efficiency of fat removal at various temperatures, gravitational forces, and for various durations of applied forces was determined. Temperature had the greatest effect on the removal of fat. Gravitational force and the duration of applied force were less important at higher temperatures. A positive linear relationship between temperature and fat removal was observed from 20 to 33 degrees C. Conditions of 30 degrees C and 23,500 x g for 5 min removed 50% of the fat. The removed fat had some aroma but little or no taste. The fatty acid composition, triglyceride molecular weight distribution, and melting profile of the fat retained in the reduced-fat cheeses were all consistent with a slight increase in the proportion of saturated fat relative to the full-fat cheeses. The process of fat removal decreased the grams of saturated fat per serving of cheese from 6.30 to 3.11 g. The flavor intensity of the reduced-fat cheeses were at least as intense as the full-fat cheeses.  相似文献   
90.
Characterization of nutty flavor in cheddar cheese   总被引:4,自引:0,他引:4  
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号