首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2171篇
  免费   21篇
  国内免费   4篇
电工技术   21篇
综合类   34篇
化学工业   1421篇
金属工艺   22篇
机械仪表   27篇
建筑科学   42篇
矿业工程   13篇
能源动力   95篇
轻工业   409篇
水利工程   3篇
石油天然气   8篇
武器工业   2篇
无线电   12篇
一般工业技术   54篇
冶金工业   20篇
原子能技术   6篇
自动化技术   7篇
  2024年   1篇
  2023年   5篇
  2022年   12篇
  2021年   20篇
  2020年   26篇
  2019年   16篇
  2018年   26篇
  2017年   46篇
  2016年   41篇
  2015年   44篇
  2014年   95篇
  2013年   635篇
  2012年   67篇
  2011年   132篇
  2010年   79篇
  2009年   72篇
  2008年   90篇
  2007年   143篇
  2006年   101篇
  2005年   72篇
  2004年   85篇
  2003年   54篇
  2002年   66篇
  2001年   66篇
  2000年   26篇
  1999年   24篇
  1998年   25篇
  1997年   21篇
  1996年   20篇
  1995年   14篇
  1994年   20篇
  1993年   6篇
  1992年   19篇
  1991年   6篇
  1990年   4篇
  1989年   2篇
  1988年   3篇
  1987年   4篇
  1986年   4篇
  1982年   3篇
  1981年   1篇
排序方式: 共有2196条查询结果,搜索用时 15 毫秒
101.
《Ceramics International》2017,43(15):11543-11551
Spray drying is one of the most convenient methods for drying suspensions (slurries) and for granulation of materials. Spray dried powders have good flowability, narrow size distribution and controllable morphology. Morphology of powder particles (also called granules or microspheres) strongly affects the use and handling of powders. This review discusses the latest research on parameters that affect morphology and size of granules obtained by spray drying: atomization parameters, properties of sprayed slurry, mass transfer etc. The formation of hollow and dense granules is extensively reviewed. Granule size is affected by droplet size, slurry concentration and initial particle size. Morphology mostly depends on size distribution of initial ceramic particles, agglomeration tendency in the slurry and mechanical strength of the shell of a granule during the drying process compared to capillary force of the suspension liquid. Polymer additives (e.g. binders and lubricants) change the properties of granule shell and the evaporation of moisture; thus, polymer additives significantly affect morphology.  相似文献   
102.
Luis A. Segura 《Drying Technology》2013,31(9-11):2007-2019
Abstract

Simulation results of pore-level drying of non-hygroscopic, non-rigid, liquid-wet porous media are presented. Two- and three-dimensional pore networks represent pore spaces. Two kinds of mechanisms are considered: evaporation and hydraulic flow. The process is considered under isothermal conditions. Capillary forces thus dominate over viscous forces and the drying is considered as a modified form of invasion percolation. Liquid in pore corners allows for hydraulic connection throughout the network. During drying, liquid is replaced by vapor by two fundamental mechanisms: evaporation and pressure gradient–driven liquid flow. The development of capillary pressure as menisci turn concave induces shrinkage of the matrix, which contributes to the pressure gradient that drives liquid toward the surface of the network. Using Monte Carlo simulation, we find evaporation and drainage times; the shortest calculated indicates the controlling mechanism. Here we report distributions of liquid and vapor as drying time advances. For the calculation of transport properties, details of pore space and displacement are subsumed in pore conductances. Solving for the pressure field in each phase, vapor and liquid, we find a single effective conductance for each phase as a function of liquid saturation. Along with the effective conductance for the liquid-saturated network, the relative permeability of liquid and diffusivity of vapor are calculated.  相似文献   
103.
Abstract

The objective of this work will be to look at basic micro-level simulations of liquid state and movement. Defining liquid movement at fiber-coating boundaries is essential when modeling surface wetting of paper fibers. Drying studies have shown that chemical additives in base paper or coating color may reduce or increase quality, productivity, and energy efficiency considerably. The latest question is, Which are the factors that are significantly influencing liquid movement at fiber-coating boundaries? A phenomenon of less liquid drainage at lower paper moisture content is studied in this work together with the fiber hornification process. Fiber hornification is a complex change in the physicochemical properties of the fiber surface and the state of boundary molecules. Another important objective is to show how hornification may be accounted for in basic calculations. This while, printing properties of paper (mottling, etc.), may then be connected to the formation of the base paper and its drying history, explaining in more detail the importance of microlevel physicochemical property changes at fiber surfaces.  相似文献   
104.
Abstract

A conveyor-belt dryer for picrite has been modeled mathematically in this work. The necessary parameters for the system of equations were obtained from regression analysis of thin-layer drying data. The convective drying experiments were carried out at temperatures of 40, 60, 80, and 100°C and air velocities of 0.5 and 1.5 m/sec. To analyze the drying behavior, the drying curves were fitted to different semi-theoretical drying kinetics models such as those of Lewis, Page, Henderson and Pabis, Wang and Singh, and the decay models. The decay function (for second order reactions) gives better results and describes the thin layer drying curves quite well. The effective diffusivity was also determined from the integrated Fick's second law equation and correlated with temperature using an Arrhenius-type model. External heat and mass transfer coefficients were refitted to the empirical correlation using dimensionless numbers (J h , J D  = m · Re n ) and their new coefficients were optimized as a function of temperature. The internal mass transfer coefficient was also correlated as a function of moisture content, air temperature, and velocity.  相似文献   
105.
This study develops a mathematical model for coupled heat and mass transfer in an unsaturated porous slab exposed to a flowing hot gas. Effects of the initial saturation conditions on associated variables, i.e., total pressure, temperature, moisture content, and multiphase flow, are studied. The Newton-Raphson method based on a finite volume technique is applied. This study emphasizes the influence of initial saturation level and gravitational effect in heat and multiphase flow phenomena associated with this system. Gravity enhances the downward flow of liquid within the porous slab. Pressure buildup occurs near the interface between the wet and the dry zone. However, it appears that the order of magnitude to the total pressure is small. This study explains the fundamental mechanism of multiphase flow that involves heat and mass transfer in a heated unsaturated porous slab.  相似文献   
106.
A mathematical model was developed for simulating a convective batch lumber drying process. The model incorporates mass and heat transfer relationships within the lumber stack, as well as thermodynamic properties of the wood and drying air. It takes into account the change of air properties along the stack and its effect on the mass and heat transfer parameters. The model relies on a drying rate function that is an empirical correlation based on single-board tests. A drying rate function for western hemlock (Tsuga heterophylla) lumber was developed. The drying rate function was obtained based on experiment results from 500 small boards dried over a range of conditions used in commercial practice. The model was first validated against data available in the literature and then against large batches of hemlock dried in a laboratory kiln. In both cases, the model output was in good agreement with the average moisture content, the drying rates, and the temperatures measured in the larger batches.  相似文献   
107.
《Drying Technology》2013,31(7):1463-1483
ABSTRACT

Drying curves were determined in a mechanically agitated fluidized bed dryer, at temperatures between 70°C and 160°C, air velocities between 1.1 m/s and 2.2 m/s and stirring rates between 30 rpm and 70 rpm for batch drying of 3 kg lots of carrot slices, measuring the moisture content and shrinking of the particles in time. This was complemented by a study of the rate and degree of swelling of dried carrot particles in water between 20 and 75°C. Drying kinetics were modeled by Fick's second law, for which an optimal agreement with the experimental data was obtained when the effective diffusivity (D e ) was determined by a correlation based on the air velocity (v), the air temperature (T) and the dimensional moisture content of the carrot particles (X/X o ). Loss of carotenes is minimized when dehydration is carried out at about 130°C with a drying time below 12 min.  相似文献   
108.
《Drying Technology》2013,31(9):1751-1768
ABSTRACT

A unique experimental equipment for extensive trials on the spray drying kinetics and particles residence time involving “in situ” analysis of the properties of continuous and dispersed phases was designed, built, and tested. Advanced experimental techniques (including laser techniques) to determine current parameters of spray drying process (temperature, humidity, moisture content) and current structure of spray (particle size distribution, particle velocities, etc.) were employed. Full scale spray drying tests of baker's yeast and maltodextrin enabled identification of the effect of process parameters on drying kinetics and spray residence time in the tower. Quantitative relationship describing spray drying kinetics as a function of atomization ratio and drying agent temperature were determined. The experimental results proved that spray residence time was controlled by atomization ratio and airflow rate. Drying kinetics in spray drying process is presented for the first time in the literature.  相似文献   
109.
《Drying Technology》2013,31(1-2):387-396
Abstract:

In order to design, manufacture, and commission a commercial dryer to dry individually quick frozen (IQF) wild blueberries (Vaccinium angustifolium), The Nova Scotian Fruit Company completed a series of experiments to characterize the effect of air velocity, air temperature, and packed bed depth on drying. Based on previous experience with forced air packed bed drying systems at air temperatures up to 65°C, the experiments focused on measuring the effect of air temperature and velocity during the first few hours of drying. The data collected suggest that drying occurs solely in the falling rate period. These data were used to successfully design, build, and commission a commercial dryer with a tenfold increase in production capacity over previous equipment.  相似文献   
110.
《Drying Technology》2013,31(1-2):305-315
Abstract

Moisture is one of the most deteriorating factors of buildings. The deteriorating effect of moisture occurs mainly during the drying phase, not in the wetting phase. Environmental factors, such as air temperature, air humidity, and air velocity affect drying. An experimental air dryer of controlled drying air conditions was used to investigate the drying performance of 4 stone materials, 2 bricks, and 6 plasters. Drying kinetics was examined at 3 air temperatures, 5 air humidities, and 3 air velocities. A first-order kinetics model was obtained in which the drying time constant was a function of the drying conditions, and the equilibrium material moisture content was described by the modified Oswin equation. The parameters of the proposed model were found to be affected strongly by the material characteristics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号