首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5978篇
  免费   32篇
  国内免费   167篇
电工技术   57篇
综合类   49篇
化学工业   2468篇
金属工艺   705篇
机械仪表   156篇
建筑科学   61篇
矿业工程   41篇
能源动力   1364篇
轻工业   57篇
石油天然气   32篇
武器工业   1篇
无线电   120篇
一般工业技术   871篇
冶金工业   83篇
原子能技术   26篇
自动化技术   86篇
  2024年   5篇
  2023年   106篇
  2022年   145篇
  2021年   185篇
  2020年   160篇
  2019年   135篇
  2018年   147篇
  2017年   145篇
  2016年   101篇
  2015年   93篇
  2014年   267篇
  2013年   309篇
  2012年   239篇
  2011年   706篇
  2010年   523篇
  2009年   563篇
  2008年   504篇
  2007年   435篇
  2006年   347篇
  2005年   195篇
  2004年   174篇
  2003年   151篇
  2002年   170篇
  2001年   60篇
  2000年   51篇
  1999年   54篇
  1998年   40篇
  1997年   33篇
  1996年   25篇
  1995年   22篇
  1994年   19篇
  1993年   12篇
  1992年   11篇
  1991年   5篇
  1990年   9篇
  1989年   5篇
  1988年   4篇
  1987年   3篇
  1986年   2篇
  1985年   9篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1974年   1篇
排序方式: 共有6177条查询结果,搜索用时 15 毫秒
991.
An analytical model is developed to study the electrochemical characteristics of a solid oxide electrolysis cell (SOEC) for carbon dioxide reduction, in which the activation overpotential, concentration overpotential, and ohmic overpotential are considered as the main sources of voltage losses. The Bulter-Volmer equation, DGM model, and Ohm's law are employed to characterize the three overpotentials, respectively. The theoretical model is validated by comparing the simulation results with the experimental data from the literature. The anode-supported configuration SOEC is found to be the most favorable design. The effects of the cathode inlet gas molar fraction on the cathode overpotential and the cell potential are discussed in detail. It is found that there exists an optimum molar fraction for the cathode inlet gas at which the cathode concentration overpotential attains its minimum for given operation conditions. Moreover, the effects of some importantly operating parameters such as the current density, temperature and pressure on the cell potential are discussed. Thermal-electrochemical analysis shows that the Joule heat generated from the irreversibilities in the SOEC may be larger than, equal to, or smaller than the thermal energy needed for the carbon dioxide reduction reaction, and consequently, a system layout with five different design strategies to implement the carbon dioxide electrolysis is put forward.  相似文献   
992.
In this paper, direct methanol fuel cell's (DMFC's) electrochemical process was successfully investigated in situ using Electrochemical Impedance Spectroscopy (EIS) method. Under three-electrode system, anode and cathode's polarization overpotential, charge transferring resistance and active surface were independently measured in order to reveal the degradation factors after 50 h stability testing. The results showed that Ru's dispersing, membrane's swelling and water flooding were main reasons resulting in performance decline. And SEM images confirmed these conclusions. Moreover, cathode's degradation was less serious than anode and it could be recovered. Traditional equivalent circuit model of self-breathing DMFC was modified according to a fact that the dielectric relaxation phenomenon of porous electrode occurred at cathode rather than anode.  相似文献   
993.
Nominal Ti2Ni was synthesized under argon atmosphere at room temperature using a planetary high-energy ball mill. The effect of milling time and Zr substitution for Ti on the microstructure was characterized by XRD, SEM and TEM, and the discharge capacities of Ti2−xZrxNi (x = 0, 0.1, 0.2) were examined by electrochemical measurements at galvanostatic conditions. XRD analysis shows that amorphous phase of Ti2Ni can be elaborated by 60 h of milling, whereas Zr substitution hinders amorphization process of the system. The products of ball milling nominal Ti2−xZrxNi (x = 0.1, 0.2) were austenitic (Ti, Zr)Ni and partly TiO, despite the fact that the operation was carried out under argon atmosphere. By comparing the SEM micrographs, it is found that the amorphous phase of Ti2Ni was formed in the stage of cold-welding during milling, while with Zr substitution particles were flaky and finer, inhomogeneous in size distribution with massive agglomeration. TEM analysis was carried out and confirmed the observations via XRD. In the electrochemical tests, amorphous Ti2Ni shows the best discharge capacity at 102 mAh/g at a current density of 40 mA/g. Without need of activation, it exhibits extraordinary cycling stability under room temperature. On the other hand, the effect of Zr substitution on the electrochemical property of Ti2Ni is tricky, as superficially the discharge capacity drops drastically with Zr substitution, but with increase of Zr content (from x = 0.1 to x = 0.2), the discharge capacity increases generally, which credits to larger unit-cell-volume provided by ZrNi compared to TiNi. It is also found that the Ti–Ni system becomes significantly susceptible to oxidation when Zr is introduced to the initial powders as mechanical alloying is deployed as a synthesis method.  相似文献   
994.
La2−xSrxCoO4−δ (x = 0.9, 1.0, 1.1) compounds with Ruddlesden-Popper K2NiF4-type structure have been investigated as potential cathode materials for IT-SOFC application. Materials have been prepared by citrate-nitrate combustion method. Structural evolution analysed by XRD shows a shortened Co–O–Co bond length within the perovskite layer as Sr substitution increases, while the interlayer distance at the same time increases. An oxygen stoichiometry close to 4 has been found for all compositions at room temperature. Thermal expansion coefficients have been obtained from temperature-dependent XRD analysis and show large values (>20 × 10−6 K−1) compared to the currently utilized electrolyte materials. Electrochemical characterisation has been performed by means of impedance spectroscopy on symmetric cells with CGO electrolyte. Pure electrodes have a high Area Specific Resistance, probably due to limited oxygen ion diffusion. By using composite electrode (50 wt.% CGO), an Area Specific Resistance of 0.25 Ω cm2 is obtained at approximately 700 °C for all the three compounds suggesting promising electrochemical properties for IT-SOFCs.  相似文献   
995.
Oxygen reduction reaction of (La,Sr)MnO3 (LSM) cathode on La9.5Si6O26.25 apatite (LSO) electrolyte is studied over the temperature range 750–900 °C and the oxygen partial pressure range 0.01–1 atm by electrochemical impedance spectroscopy. The impedance responses show two separable arcs and are analyzed in terms of two different equivalent circuits with comparable information on the electrode processes at high and low frequencies. The electrode process associated with the high frequency arc (σ1) is basically independent of oxygen partial pressure. The activation energy of σ1 is 188 ± 15 kJ mol−1 for the O2 reduction reaction on the LSM electrode sintered at 1150 °C, and decreases to 120 kJ mol−1 for the O2 reduction reaction on the LSM electrode sintered at 850 °C, which is close to 80–110 kJ mol−1 observed for the same electrode process at LSM/YSZ interface. The reaction order with respect to PO2PO2 and the activation energy of the electrode process associated with low frequency arc (σ2) are generally close to that of σ2 at the LSM/YSZ interface. The activation process of the cathodic polarization treatment is noticeably slower for the reaction at LSM/LSO interface as compared to that at LSM/YSZ interface. The impedance responses of O2 reduction reaction at the LSM/LSO interface are significantly higher than that at the LSM/YSZ interface due to the silicon spreading. The impedance responses decrease with the decrease of the sintering temperature of LSM electrode on LSO electrolyte. At the sintering temperature of 1000 °C, the impedance responses of O2 reduction reaction is 1.74 Ω cm2 at 900 °C, which is significantly smaller than that of LSM electrode sintered at 1150 °C.  相似文献   
996.
Graphene nanoribbons (GNRs) were first used as a novel support material for Pt nanoparticles (NPs) based catalyst for methanol electro-oxidation. Upon oxidation and cutting of multiwall carbon nanotubes (MWCNTs), highly dispersive graphene oxide nanoribbons (GONRs) were obtained, on which metal ions such as PtCl62− can be homogenously deposited. The hybrid catalyst of GNRs supported Pt NPs (Pt/GNR) was further prepared through facile in-situ chemical co-reduction, with a homogeneous distribution of Pt NPs (2–3 nm) on the nanoribbons. Compared to Pt/MWCNT and commercial Pt/XC72R catalysts, Pt/GNR hybrids show much larger electrochemically active surface area, higher electrochemical stability, and better CO tolerance towards electro-oxidation of methanol. Therefore, GNR is a promising alternative two-dimensional support material for electrocatalysts in direct methanol fuel cells.  相似文献   
997.
田京雷  马娥 《宽厚板》2013,(5):29-31
介绍了新型铁碳活性焦相对传统微电解填料具有的优点及其在污水处理中的应用,分析了铁碳活性焦微电解技术的反应机理及影响因素,并对如何提高废水的综合处理效率进行了探索.  相似文献   
998.
电弧喷涂金属层电化学性能研究   总被引:1,自引:0,他引:1  
本文采用电化学测试方法,分析比对电弧喷涂涂层的腐蚀电位、腐蚀电流,进而比较它们对基体金属的牺牲阳极保护作用及腐蚀性能,以期为钢结构长效防腐复合涂层体系的设计提供参考。  相似文献   
999.
Abstract The electrochemical reaction mechanism and electrocrystaUization process of tungsten in the NaCl- KCl-NaF-WO3 molten salt were investigated at 973 K (700℃) by means of cyclic voltammetry, chronopotentiometry, and chronoamperometry techniques. The results show that the electrochemical reaction process of tungsten in the NaCl-KCl-NaF-WO3 molten salt system is a quasireversible process mix-controlled by ion diffusion rate and electron transport rate. Tungsten ion in this system is reduced to W(0) in two steps. The electrocrystallization process of tungsten is found to be an instantaneous, hemispheroid three-dimensional nucleation process and the tungsten ion diffusion coefficient of 2.361 × 10^-4 cm2.s^-1 is obtained at experimental conditions.  相似文献   
1000.
The corrosion behavior of 5A05 aluminum alloy in 3.5 wt.%NaCl solution was investigated by scanning electron microscopy(SEM),X-ray photoelectron spectroscopy(XPS),Fourier transform-infrared(FT-IR)spectroscopy and electrochemical impedance spectroscopy(EIS)test,and the corrosion mechanism was also discussed.The results showed that the corrosion rates of the 5A05 alloy were low and decreased with the increase in immersion time.Under the conditions of exposure studied,this alloy sufered from pitting corrosion that took place from or around the intermetallic particles existing in the alloy.The number and size of the hemispherical corrosion pits on the sample surfaces increased with the increase of the test time.The dark-grey layer of corrosion products formed on 5A05 aluminum alloy in 3.5%NaCl solution contained many microcracks.Furthermore,XPS and FT-IR analysis proved that the corrosion products were mainly composed of Al2O3,Al(OH)3 and AlCl3.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号