首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   0篇
  国内免费   1篇
综合类   5篇
化学工业   71篇
金属工艺   3篇
机械仪表   5篇
建筑科学   20篇
矿业工程   1篇
能源动力   1篇
轻工业   10篇
水利工程   3篇
石油天然气   1篇
一般工业技术   2篇
原子能技术   2篇
  2022年   1篇
  2021年   1篇
  2018年   1篇
  2016年   2篇
  2015年   3篇
  2014年   9篇
  2013年   6篇
  2012年   8篇
  2011年   7篇
  2010年   7篇
  2009年   2篇
  2008年   3篇
  2007年   13篇
  2006年   8篇
  2005年   7篇
  2004年   9篇
  2003年   3篇
  2002年   3篇
  2001年   1篇
  2000年   9篇
  1999年   2篇
  1997年   2篇
  1996年   5篇
  1995年   4篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1986年   1篇
  1985年   1篇
排序方式: 共有124条查询结果,搜索用时 15 毫秒
51.
Bromate ion formation during ozonation processes in water works is regarded as an issue of great interest because of its potential for carcinogenicity. In this research, genotoxicity of bromate ion was investigated by the umu-test using Salmonella typhimurium TA 1535/pSK1002. The time-course study showed that the umuC gene related to error-prone repair of damaged DNA was induced by bromate ion after 12 hours exposure of the test strain. However, a further study revealed that this induction was inactivated by metabolism with rat liver microsome when bromate ion concentration was less than 0.88 mg BrO3 ?/mg as protein of the S9 fraction. This inactivation was assumed to depend on -SH compounds in liver microsome.  相似文献   
52.
Bromate removal from water by granular ferric hydroxide (GFH)   总被引:1,自引:0,他引:1  
The feasibility of granular ferric hydroxide (GFH) for bromate removal from water has been studied. Batch experiments were performed to study the influence of various experimental parameters such as effect of contact time, initial bromate concentration, temperature, pH and effect of competing anions on bromate removal by GFH. The adsorption kinetics indicates that uptake rate of bromate was rapid at the beginning and 75% adsorption was completed in 5 min and equilibrium was achieved within 20 min. The sorption process was well described by pseudo-second-order kinetics. The maximum adsorption potential of GFH for bromate removal was 16.5 mg g−1 at 25 °C. The adsorption data fitted well to the Langmuir model. The increase in OH peak and absence of Br–O bonding in FTIR spectra indicate that ion-exchange was the main mechanism during bromate sorption on GFH. The effects of competing anions and solution pHs (3–9) were negligible. Results of the present study suggest that GFH can be effectively utilized for bromate removal from drinking water.  相似文献   
53.
Bromate(BrO_3) is a disinfection by-product in drinking water, and its removal is very difficult especially at low levels.60 Co gamma rays were used to remove BrO_3in aqueous solution in this study. The effects of absorbed doses, BrO_3initial concentration, gas saturation, p H value and coexisting anions(Cl, NO 3, SO2 4and HCO 3=CO_3~(2 -))on BrO_3reduction were evaluated. After 4.0-k Gy irradiation of air-equilibrated solution of 30.7 lg/L BrO_3, the residual BrO_3was 8.3 lg/L, which is below the maximum contaminant level of drinking water. The BrO_3reduction rate increased with the dose, in the order of N2[ air [ O_2[ N_2O atmosphere under similar conditions. The results also show that high p H favored the BrO_3removal. According to the experimental results, it can be concluded that the efficiency of decomposing BrO_3by reactive species followed the order of e aq[ H [ HO_2 [ O_2. Coexisting Cl, HCO 3=CO_3~(2 -)and SO2 4ions have little effect on BrO_3removal, whereas NO_3can inhibit its removal as a result of competition with BrO_3for e aq.  相似文献   
54.
The objective of the current study was to isolate and characterize several bromate-reducing bacteria and to examine their potential for bioaugmentation to a drinking water treatment process. Fifteen bromate-reducing bacteria were isolated from three sources. According to 16S rRNA gene sequencing, the bromate-reducing bacteria are phylogenetically diverse, representing the Actinobacteria, Bacteroidetes, Firmicutes, and α-, β-, and γ-Proteobacteria. The broad diversity of bromate-reducing bacteria suggests the widespread capability for microbial bromate reduction. While the cometabolism of bromate via nitrate reductase and (per)chlorate reductase has been postulated, five of our bromate-reducing isolates were unable to reduce nitrate or perchlorate. This suggests that a bromate-specific reduction pathway might exist in some microorganisms. Bioaugmentation of activated carbon filters with eight of the bromate-reducing isolates did not significantly decrease start-up time or increase bromate removal as compared to control filters. To optimize bromate reduction in a biological drinking water treatment process, the predominant mechanism of bromate reduction (i.e., cometabolic or respiratory) needs to be assessed so that appropriate measures can be taken to improve bromate removal.  相似文献   
55.
A reactive transport model was developed to simultaneously predict Cryptosporidium parvum oocyst inactivation and bromate formation during ozonation of natural water. A mechanistic model previously established to predict bromate formation in organic-free synthetic waters was coupled with an empirical ozone decay model and a one-dimensional axial dispersion reactor (ADR) model to represent the performance of a lab-scale flow-through ozone bubble-diffuser contactor. Dissolved ozone concentration, bromate concentration (in flow-through experiments only), hydroxyl radical exposure and C. parvum oocyst survival were measured in batch and flow-through experiments performed with filtered Ohio River water. The model successfully represented ozone concentration and C. parvum oocyst survival ratio in the flow-through reactor using parameters independently determined from batch and semi-batch experiments. Discrepancies between model prediction and experimental data for hydroxyl radical concentration and bromate formation were attributed to unaccounted for reactions, particularly those involving natural organic matter, hydrogen peroxide and carbonate radicals. Model simulations including some of these reactions resulted in closer agreement between predictions and experimental observations for bromate formation.  相似文献   
56.
Formation of oxidation byproducts from ozonation of wastewater   总被引:2,自引:0,他引:2  
Disinfection byproduct (DBP) formation in tertiary wastewater was examined after ozonation (O(3)) and advanced oxidation with O(3) and hydrogen peroxide (O(3)/H(2)O(2)). O(3) and O(3)/H(2)O(2) were applied at multiple dosages to investigate DBP formation during coliform disinfection and trace contaminant oxidation. Results showed O(3) provided superior disinfection of fecal and total coliforms compared to O(3)/H(2)O(2). Color, UV absorbance, and SUVA were reduced by O(3) and O(3)/H(2)O(2), offering wastewater utilities a few potential surrogates to monitor disinfection or trace contaminant oxidation. At equivalent O(3) dosages, O(3)/H(2)O(2) produced greater concentrations of assimilable organic carbon (5-52%), aldehydes (31-47%), and carboxylic acids (12-43%) compared to O(3) alone, indicating that organic DBP formation is largely dependent upon hydroxyl radical exposure. Bromate formation occurred when O(3) dosages exceeded the O(3) demand of the wastewater. Bench-scale tests with free chlorine showed O(3) is capable of reducing total organic halide (TOX) formation potential by at least 20%. In summary, O(3) provided superior disinfection compared to O(3)/H(2)O(2) while minimizing DBP concentrations. These are important considerations for water reuse, aquifer storage and recovery, and advanced wastewater treatment applications.  相似文献   
57.
以1,10-邻二氮菲为Fe2+的显色剂,采用分光光度法测定Fe2+的质量浓度,通过水中溴酸盐的氧化性将Fe2+氧化为Fe3+,使1,10-邻二氮菲褪色,间接测定水中溴酸盐的质量浓度。对线性范围、检出限、加标回收率以及1,10-邻二氮菲与Fe2+的显色条件进行了考察。结果表明:样品的加标回收率为92.5%~108.7%,检出限为12~36ng/L,精密度为0.312%。  相似文献   
58.
采用紫外-可见分光光度法测定矿泉水和饮用水中的溴酸盐,研究了矿泉水和饮用水中溴酸根离子与碘离子的反应时间、盐酸体积、碘化钾质量、线性范围对溴酸盐质量浓度的影响.在避光的情况下测定矿泉水和饮用水中溴酸盐的平均质量浓度分别为10.33 μg/L和9.33 μg/L.矿泉水和饮用水的加标回收率分别在96.03%~105.59...  相似文献   
59.
Bromate formation has been identified as a significant barrier in the application of ozone during water treatment for water sources that contain high levels of bromide. Bromate has been identified as a possible human carcinogen and bromate levels in drinking water are strictly controlled at 10 μg/L in most developed countries. Various models have been proposed to model bromate formation during ozonation based on raw water quality, ozone dose and contact time. Two main approaches for modeling have been used: an empirical regression modeling methodology and kinetic-based methodology. Currently, the benefit of the bromate models lies in their ability to show how process parameters may impact on the amount bromate formed.  相似文献   
60.
Cyclic voltammetry was used to investigate the electrochemical behaviour of the tungsten oxide films toward the electroreduction of BrO3, ClO2 and NO2 ions in acidic medium. The effects of the temperature, scan rate, pH, chemical composition of the electrolytic solutions, were investigated and the reduction mechanism was critically discussed.The reduction currents, evaluated in cyclic voltammetry and measured at −0.250 V versus SCE, increased linearly on increasing analyte concentration up to 20, 55 and 45 mM for nitrite, chlorite and bromate ions, respectively. The detection limits, evaluated in cyclic voltammetry, were 0.1, 0.4 and 0.7 mM for BrO3, ClO2 and NO2, respectively.The tungsten oxide film was successfully characterized as an amperometric sensor for the analytical determination of BrO3, ClO2 and NO2 ions in flowing stream. Operating under constant applied potential of −0.3 V versus Ag/AgCl the good reproducibility of the peak height and background current level during consecutive injections, indicates the absence of fouling effects and the potential applicability of the amperometric sensor for the routine analytical determination of the investigated inorganic ions. Considering the low values of the background currents (ca. 1.1 ± 0.1 μA) obtained in acidic and not deoxygenated carrier electrolyte, the tungsten sensing electrode seems to compete favourably with other common sensors for the amperometric determination of electroactive molecules under cathodic conditions.The X-ray photoelectron spectroscopy technique (XPS) was used in order to evaluate the chemical composition of the tungsten film upon electrochemical treatment in 0.1 M H2SO4 solution. Independently of the electrochemical treatment in acid solution, the tungsten surface electrode is generally composed by 50-60% of W0, 35-40% of W6+ and traces of W2+ oxide species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号