首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   230篇
  免费   2篇
电工技术   1篇
综合类   2篇
化学工业   62篇
金属工艺   3篇
机械仪表   1篇
建筑科学   38篇
能源动力   2篇
轻工业   90篇
水利工程   2篇
石油天然气   11篇
一般工业技术   6篇
原子能技术   10篇
自动化技术   4篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   4篇
  2016年   5篇
  2015年   4篇
  2014年   12篇
  2013年   15篇
  2012年   12篇
  2011年   23篇
  2010年   23篇
  2009年   13篇
  2008年   17篇
  2007年   14篇
  2006年   16篇
  2005年   9篇
  2004年   5篇
  2003年   10篇
  2002年   3篇
  2001年   6篇
  2000年   5篇
  1999年   5篇
  1998年   3篇
  1996年   2篇
  1995年   5篇
  1994年   2篇
  1993年   4篇
  1992年   2篇
  1991年   2篇
  1988年   2篇
  1980年   1篇
排序方式: 共有232条查询结果,搜索用时 15 毫秒
31.
Water lice, Asellus aquaticus (isopoda), frequently occur in drinking water distribution systems where they are a nuisance to consumers and water utilities. Whether they are solely an aesthetic problem or also affect the microbial water quality is a matter of interest. We studied the influence of A. aquaticus on microbial water quality in non-chlorinated drinking water in controlled laboratory experiments. Pure cultures of the indicator organisms Escherichia coli and Klebsiella pneumoniae and the pathogen Campylobacter jejuni as well as naturally occurring heterotrophic drinking water bacteria (measured as heterotrophic plate counts, HPC) were investigated in microcosms at 7 °C, containing non-sterilised drinking water, drinking water sediment and A. aquaticus collected from a non-chlorinated ground water based drinking water supply system. Concentrations of E. coli, K. pneumoniae and C. jejuni decreased over time, following a first order decay with half lives of 5.3, 18.4 and 1.3 days, respectively. A. aquaticus did not affect survival of indicators and pathogens substantially whereas HPC were influenced by presence of dead A. aquaticus. Growth rates increased with an average of 48% for bacteria grown on R-2A agar and an average of 83% for bacteria grown on yeast extract agar when dead A. aquaticus were present compared to no and living A. aquaticus present. A. aquaticus associated E. coli, K. pneumoniae and C. jejuni were measured (up to 25 per living and 500 per dead A. aquaticus) and so were A. aquaticus associated heterotrophic bacteria (>1.8*104 CFU per living and >6*104 CFU per dead A. aquaticus). A. aquaticus did not serve as an optimised habitat that increased survival of indicators and pathogens, since A. aquaticus associated E. coli, K. pneumoniae and C. jejuni were only measured as long as the bacteria were also present in the water and sediment.  相似文献   
32.
Growth, growth boundary and inactivation models have been extensively developed in predictive microbiology and are commonly applied in food research nowadays. Few studies though report the development of models which encompass all three areas together. A tiered modelling approach, based on the Gamma hypothesis, is proposed here to predict the behaviour of Listeria.Datasets of Listeria spp. behaviour in laboratory media, meat, dairy, seafood products and vegetables were collected from literature, unpublished sources and from the databases ComBase and Sym'Previus. The explanatory factors were temperature, pH, water activity, lactic and sorbic acids. For the growth part, 697 growth kinetic datasets were fitted. The estimated growth rates and 2021 additional growth primary datasets were used to fit the secondary growth models. In a second step, the fitted model was used to predict the growth/no-growth boundary. For the inactivation modelling phase, 535 inactivation curves were used.Gamma models with and without interactions between the explanatory factors were used for the growth and boundary models. The correct prediction percentage (predicted growth when growth is observed + predicted inactivation when inactivation is observed) varied from 62% to 81% for the models without interactions, and from 85% to 87% for the models with interactions. The median error for the predicted population size was less than 0.34 log10(CFU/mL) for all models. The kinetics of inactivation were fitted with modified Weibull primary models and the estimated bacterial resistance was then modelled as a function of the explanatory factors. The error for the predicted microbial population size was less than 0.71 log10(CFU/mL) with a median value of less than 0.21 for all foods.The model enables the quantification of the increase or decrease in the bacterial population for a given formulation or storage condition. It might also be used to optimise a food formulation or storage condition in the case of a targeted increase or decrease of the bacterial population.  相似文献   
33.
34.
The inactivation of pectinesterase (PE) in a commercial enzyme formulation (CEF) under pulsed electric fields (PEF) was studied. Samples of an aqueous solution of the CEF were exposed to exponential waveform pulses for up to 16 ms at electric field intensities ranging from 5 to 24 kV cm–1. Pulses were delivered in monopolar mode. The observed inactivation of the enzyme was described by several kinetics and regarding the input of electrical energy density (Q) models using Bayesian non-linear regression. Posterior distributions of the characteristic parameters for each kinetic model (based on the Hülsheger or the Weibull equation) and each Q model (based on exponential decay or the Weibull equation) were obtained. Kinetics models based on the Weibull equation showed better goodness and accuracy than the other models.  相似文献   
35.
M.I. Bazhal  G.S.V. Raghavan 《LWT》2006,39(4):420-426
Inactivation of Escherichia coli O157:H7 in liquid whole egg using thermal and pulsed electric field (PEF) batch treatments, alone and in combination with each other, was investigated. Electric field intensities in the range from 9 to 15 kV/cm were used in the study. The threshold temperature for thermal inactivation alone was 50 °C. PEF enhanced the inactivation of E. coli O157:H7 when the sample temperature was higher than the thermal threshold temperature. The maximum inactivation of E. coli O157:H7 obtained using thermal treatment alone was ∼2 logs at 60 °C. However, combined heat and PEF treatments resulted in up to 4 log reduction of the pathogen. The kinetic rate constants kTE for combined treatments at 55 °C varied from 0.025 to 0.119 pulse−1 whereas the rate constants at 60 °C ranged from 0.034 to 0.228 pulse−1. These results indicated a synergy between temperature and electric field on the inactivation of E. coli O157:H7 within a given temperature range.  相似文献   
36.
The individual and combined effects of high pressure carbon dioxide (HPCD) and nisin (200 IU/mL) on the inactivation of Escherichia coli O157:H7 suspended in physiological saline (PS, pH 5.60), phosphate-buffered saline (PBS, pH 5.60 or 7.00) or carrot juice (pH 6.80) were evaluated. The pressure in this study was 5 and 8 MPa, the temperature was 25 °C–45 °C, and the treatment time was 5–65 min. Inactivation of cells in PS (pH 5.60) by HPCD followed first order kinetics, the k (the inactivation rates) increased while the D (decimal reduction time) decreased in the presence of nisin, however, the acid solution dissolving nisin rather than nisin itself played a prominent role in this combination effect with HPCD in PS buffer. The inactivation kinetics of cells in PBS (pH 5.60 or 7.00) and carrot juice (pH 6.80) by HPCD followed slow-to-fast two-stage kinetics and was fitted by the modified Gompertz equation. The M (the time at which the absolute death rate is maximum) significantly decreased in the presence of nisin. HPCD enhanced the sensitization of E. coli to nisin and the time for the complete inactivation was shortened by 2.5–5 min in PBS buffer and carrot juice by combination of HPCD and nisin (HPCD + nisin) than by HPCD alone. Regression coefficients (R2) and mean square error (MSE) were used to evaluate the model performance, indicating that the models could provide a good fitting to the experimental data.  相似文献   
37.
High pressure carbon dioxide treatment for fresh-cut carrot slices   总被引:2,自引:0,他引:2  
The effects of high pressure carbon dioxide (HPCD) treatment on natural microorganisms, indigenous enzyme activity, damage to cell membranes and hardness in fresh-cut carrot slices were investigated. 1.86 log10 cycle reduction for aerobic bacteria (AB) and 1.25 for yeasts and molds (Y&M) were achieved at 5 MPa and 20 °C for 20 min. The residual activity (RA) of peroxidase (POD), polyphenol oxidase (PPO), and pectinmethylesterase (PME) exhibited initially increase and secondly decrease with treatment time and their minimum activity was 75.8%, 90.9% and 52.8% at 5 MPa and 20 C for 15 min, respectively. Membrane damage was evaluated by relative electrolyte leakage (REL) and malondialdehyde (MDA) content. HPCD caused a significant increase of REL in carrot slices and the REL of carrot slices treated at 5 MPa and 20 °C for 15 min was 5.7 times as much as that of the untreated, however, HPCD showed no effect on MDA content. The hardness was well retained after HPCD treatment and the largest loss was 7.9% at 5 MPa and 20 °C for 15 min.

Industrial relevance

Fresh-cut carrot slices are one of the most widely used products in prepared salads, and it required strict treatment conditions to protect its quality, especially to prevent microbial spoilage and enzymatic discoloration. HPCD is one promising novel non-thermal technique without compromising the flavor, taste and nutrition aspect of food. This study analyzed the effectiveness of HPCD as a method of preserving fresh-cut carrot slices, including inactivating natural microorganisms and enzymes which are crucial to quality control. Available data provided in this study will benefit the fresh-cut fruits and vegetables industry.  相似文献   
38.
Conditions for theoretical inactivation of Cryptosporidium by ozone could be achieved at full-scale facilities if their design is appropriate. To perform this task correctly the chemical engineer's approach for process design must be applied. This paper discusses the basic equations the estimation of the disinfection efficiency of different ozone reacting systems. Available kinetic data have been integrated in a global model accounting for the hydrodynamics and mass transfer performances of the ozonation reactor. Thus the proposed method allows one to predict Cryptosporidium inactivation level in a given ozonation system. However, if a specified disinfection goal is to be achieved for Cryptosporidium with the developed model it is also possible to choose and optimize the design of the ozone reactor.  相似文献   
39.
Several recent foodborne disease outbreaks associated with leafy green vegetables, including spinach, have been reported. X-ray is a non-thermal technology that has shown promise for reducing pathogenic and spoilage bacteria on spinach leaves. Inactivation of inoculated Escherichia coli O157:H7, Listeria monocytogenes, Salmonella enterica and Shigella flexneri on spinach leaves using X-ray at different doses (0.1, 0.2, 0.3, 0.5, 0.75, 1.0, 1.5 and 2.0 kGy) was studied. The effect of X-ray on color quality and microflora counts (mesophilic counts, psychrotrophic counts and yeast and mold counts) of untreated and treated spinach was also determined. A mixture of three strains of each tested organism was spot inoculated (100 μl) onto the surface of spinach leaves (approximately 8–9 log ml−1), separately, and air-dried, followed by treatment with X-ray at 22 °C and 55–60% relative humidity. Surviving bacterial populations on spinach leaves were evaluated using a nonselective medium (tryptic soy agar) with a selective medium overlay for each bacteria; E. coli O157:H7 (CT-SMAC agar), L. monocytogenes (MOA), and S. enterica and S. flexneri (XLD). More than a 5 log CFU reduction/leaf was achieved with 2.0 kGy X-ray for all tested pathogens. Furthermore, treatment with X-ray significantly reduced the initial inherent microflora on spinach leaves and inherent levels were significantly (p < 0.05) lower than the control sample throughout refrigerated storage for 30 days. Treatment with X-ray did not significantly affect the color of spinach leaves, even when the maximum dose (2.0 kGy) was used.  相似文献   
40.
The effect of high-intensity pulsed electric field (PEF) treatment on the survival of Enterobacter sakazakii suspended in buffered peptone water (BPW) and powdered infant formula milk (IFM) was evaluated. Reference medium and IFM samples were treated with PEF. Electric field intensity and treatment time were varied from 10 to 40 kV cm−1 and from 60 to 3895 μs, respectively. Samples of buffered peptone water (3 g L−1) and IFM were inoculated with E. sakazakii (CECT 858) (109 cfu mL−1) and then treated with PEF. The inactivation data were adjusted to the Weibull frequency distribution function and Bigelow model, and constants were calculated for both substrates. A maximum 2.7 log (cfu mL−1) reduction was achieved in BPW after exposure of E. sakazakii to PEF for 360 μs (2.5 μs pulse width) at 40 kV cm−1. In IFM, exposure of E. sakazakii to PEF, with the same conditions, led to a 1.2 log (cfu mL−1) reduction. The greater the field strength and treatment time, the greater the inactivation achieved in both substrates. Even though further research will be necessary, according to the results, there are good prospects for the use of PEF in hospitals to achieve safe reconstituted infant formula before storage at refrigerated temperatures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号