首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3134篇
  免费   67篇
  国内免费   82篇
电工技术   61篇
综合类   135篇
化学工业   510篇
金属工艺   71篇
机械仪表   209篇
建筑科学   262篇
矿业工程   21篇
能源动力   241篇
轻工业   145篇
水利工程   20篇
石油天然气   132篇
武器工业   16篇
无线电   531篇
一般工业技术   550篇
冶金工业   38篇
原子能技术   71篇
自动化技术   270篇
  2023年   23篇
  2022年   59篇
  2021年   64篇
  2020年   66篇
  2019年   35篇
  2018年   41篇
  2017年   56篇
  2016年   65篇
  2015年   62篇
  2014年   133篇
  2013年   145篇
  2012年   122篇
  2011年   252篇
  2010年   156篇
  2009年   162篇
  2008年   167篇
  2007年   227篇
  2006年   208篇
  2005年   163篇
  2004年   163篇
  2003年   133篇
  2002年   123篇
  2001年   84篇
  2000年   99篇
  1999年   79篇
  1998年   86篇
  1997年   68篇
  1996年   61篇
  1995年   34篇
  1994年   33篇
  1993年   23篇
  1992年   15篇
  1991年   19篇
  1990年   12篇
  1989年   14篇
  1988年   7篇
  1987年   6篇
  1986年   5篇
  1985年   6篇
  1984年   1篇
  1983年   3篇
  1981年   1篇
  1973年   1篇
  1959年   1篇
排序方式: 共有3283条查询结果,搜索用时 15 毫秒
71.
本文报道了我们设计建设的一个煤矿井下光纤工业电视网的结构、光缆的敷设并对适合于井下环境的光端机性能作了介绍。  相似文献   
72.
Creation and annealing of light-induced defects and their effect on photocarrier lifetime have been studied at 120 and 300 K using constant photocurrent method (CPM) and steady-state photoconductivity measurements. A hysteresis-like relation is observed between photoconductivity and light-induced defect density. This relation depends on both degradation temperature and light intensity used for the degradation. A broad, resembling a two-component distribution of defect annealing activation energies together with distribution of recombination coefficients account for the observed changes at 120 K. On the other hand, these distributions are narrower and sharply peaked at about 1 eV for the 300 K measurements. Results indicate that defects which are created at the earlier stages of the illumination have smaller annealing activation energies and higher recombination coefficient (capture cross-section) and these are better recombination centers than the defects with higher annealing activation energies.  相似文献   
73.
In this paper, the bis‐condensed 4‐(dicyanomethylene)‐2‐methyl‐6‐[p‐(dimethylamino)styryl]‐4H‐pyran ( DCM) derivatives are introduced as a new class of red dye for organic light‐emitting devices (OLEDs). They showed more red‐shifted emission than the mono‐substituted DCM derivatives and the emission maxima increased as the electron‐donating ability of the aromatic donor group increased. On the basis of these results, red light‐emitting devices were fabricated with bis‐condensed DCM derivatives as red dopants. For a device of configuration ITO/TPD/Alq3 + DADB (5.2 wt.‐%)/Alq3/Al (where ITO is indium tin oxide, TPD is N,N′‐diphenyl‐N,N′‐bis(3‐methylphenyl)‐1,1′‐biphenyl‐4,4′‐diamine, Alq3 is tris(8‐hydroxyquinoline) aluminum, and DADB is [2,6‐bis[2‐[5‐(dibutylamino)phenyl]vinyl]‐4H‐pyran‐4‐ylidene]propanedinitrile), pure red emission was observed with Commission Internationale de l’Eclairage (CIE 1931) coordinates of (0.658, 0.337) at 25 mA/cm2.  相似文献   
74.
Using imidazole‐type ancillary ligands, a new class of cationic iridium complexes ( 1 – 6 ) is prepared, and photophysical and electrochemical studies and theoretical calculations are performed. Compared with the widely used bpy (2,2′‐bipyridine)‐type ancillary ligands, imidazole‐type ancillary ligands can be prepared and modified with ease, and are capable of blueshifting the emission spectra of cationic iridium complexes. By tuning the conjugation length of the ancillary ligands, blue‐green to red emitting cationic iridium complexes are obtained. Single‐layer light‐emitting electrochemical cells (LECs) based on cationic iridium complexes show blue‐green to red electroluminescence. High efficiencies of 8.4, 18.6, and 13.2 cd A?1 are achieved for the blue‐green‐emitting, yellow‐emitting, and orange‐emitting devices, respectively. By doping the red‐emitting complex into the blue‐green LEC, white LECs are realized, which give warm‐white light with Commission Internationale de L'Eclairage (CIE) coordinates of (0.42, 0.44) and color‐rendering indexes (CRI) of up to 81. The peak external quantum efficiency, current efficiency, and power efficiency of the white LECs reach 5.2%, 11.2 cd A?1, and 10 lm W?1, respectively, which are the highest for white LECs reported so far, and indicate the great potential for the use of these cationic iridium complexes in white LECs.  相似文献   
75.
In this paper, the effect of interface recombination and self-absorption within the light emitting diode (LED) active region on the efficiency of QWIP-HBT-LED integrated device is considered. This device is composed of a quantum well infrared photodetector (QWIP), a heterojunction bipolar transistor (HBT) and an LED. The evaluation is based on solving the continuity equation describing the carrier diffusion within the LED active region. Analytical expression describing the effect of self-absorption and surface recombination on the LED quantum efficiency is derived. In addition, the active region width and all interested device parameters are involved. It is observed that the quantum conversion efficiency of the device under consideration is degraded by the self-absorption and interface recombination within the recombined region of the LED. Also, the quantum conversion efficiency of the device is increased with the increase of the LED active region as long as the recombination velocity is above a specified value, while it is decreased with the increase of the LED active region as long as the recombination velocity is below this specified value.  相似文献   
76.
The cover shows an organic light‐emitting diode with remote metallic cathode, reported by Sarah Schols and co‐workers on p. 136. The metallic cathode is displaced from the light‐emission zone by one to several micrometers. The injected electrons accumulate at an organic heterojunction and are transported to the light‐emission zone by field‐effect. The achieved charge‐carrier mobility and in combination with reduced optical absorption losses because of the remoteness of the cathode may lead to applications as waveguide OLEDs and possibly a laser structure. (The result was obtained in the EU‐funded project “OLAS” IST‐ FP6‐015034.) We describe an organic light‐emitting diode (OLED) using field‐effect to transport electrons. The device is a hybrid between a diode and a field‐effect transistor. Compared to conventional OLEDs, the metallic cathode is displaced by one to several micrometers from the light‐emitting zone. This micrometer‐sized distance can be bridged by electrons with enhanced field‐effect mobility. The device is fabricated using poly(triarylamine) (PTAA) as the hole‐transport material, tris(8‐hydroxyquinoline) aluminum (Alq3) doped with 4‐(dicyanomethylene)‐2‐methyl‐6‐(julolindin‐4‐yl‐vinyl)‐4H‐pyran (DCM2) as the active light‐emitting layer, and N,N′‐ditridecylperylene‐3,4,9,10‐tetracarboxylic diimide (PTCDI‐C13H27), as the electron‐transport material. The obtained external quantum efficiencies are as high as for conventional OLEDs comprising the same materials. The quantum efficiencies of the new devices are remarkably independent of the current, up to current densities of more than 10 A cm–2. In addition, the absence of a metallic cathode covering the light‐emission zone permits top‐emission and could reduce optical absorption losses in waveguide structures. These properties may be useful in the future for the fabrication of solid‐state high‐brightness organic light sources.  相似文献   
77.
In this work we demonstrate the nanopatterning of nanocomposites made by luminescent zinc oxide nanoparticles and light‐emitting conjugated polymers by means of soft molding lithography. Vertical nanofluidics is exploited to overcome the polymer transport difficulties intrinsic in materials incorporating nanocrystals, and the rheology, fluorescence, absolute quantum yield, and emission directionality of the nanostructured composites are investigated. We study the effect of patterned gratings on the directionality of light emitted from the nanocomposites, finding evidence of the enhancement of forward emitted light, due to the printed wavelength‐scale periodicity. These results open new possibilities for the realization of nanopatterned devices based on hybrid organic‐inorganic systems.  相似文献   
78.
为实现对硅基材料和MEMS器件内微体缺陷的无损、高效和准确检测,在研究广义洛仑兹-米氏散射理论的基础上,针对硅基材料和MEMS器件的物理特点,对球形缺陷与红外激光相互作用在非垂直方向散射光强分布特点进行了研究和计算机仿真,提出利用红外激光背散射分布分析对硅基材料和MEMS器件内部缺陷进行检测的方法,并通过实验验证了该方法的有效性。  相似文献   
79.
We describe the preparation of a dendrimer that is solution‐processible and contains 2‐ethylhexyloxy surface groups, biphenyl‐based dendrons, and a fac‐tris[2‐(2,4‐difluorophenyl)pyridyl]iridium(III ) core. The homoleptic complex is highly luminescent and the color of emission is similar to the heteroleptic iridium(III ) complex, bis[2‐(2,4‐difluorophenyl)pyridyl]picolinate iridium(III ) (FIrpic). To avoid the change in emission color that would arise from attaching a conjugated dendron to the ligand, the conjugation between the dendron and the ligand is decoupled by separating them with an ethane linkage. Bilayer devices containing a light‐emitting layer comprised of a 30 wt.‐% blend of the dendrimer in 1,3‐bis(N‐carbazolyl)benzene (mCP) and a 1,3,5‐tris(2‐N‐phenylbenzimidazolyl)benzene electron‐transport layer have external quantum and power efficiencies, respectively, of 10.4 % and 11 lm W–1 at 100 cd m–2 and 6.4 V. These efficiencies are higher than those reported for more complex device structures prepared via evaporation that contain FIrpic blended with mCP as the emitting layer, showing the advantage of using a dendritic structure to control processing and intermolecular interactions. The external quantum efficiency of 10.4 % corresponds to the maximum achievable efficiency based on the photoluminescence quantum yield of the emissive film and the standard out‐coupling of light from the device.  相似文献   
80.
By using Ni0‐mediated polymerization, we have systematically synthesized a series of fluorene‐based copolymers composed of blue‐, green‐, and red‐light‐emitting comonomers with a view to producing polymers with white‐light emission. 2,7‐Dibromo‐9,9‐dihexylfluorene, {4‐(2‐[2,5‐dibromo‐4‐{2‐(4‐diphenylamino‐phenyl)‐vinyl}‐phenyl]‐vinyl)‐phenyl}‐diphenylamine (DTPA), and 2‐{2‐(2‐[4‐{bis(4‐bromo‐phenyl)amino}‐phenyl]‐vinyl)‐6‐tert‐butyl‐pyran‐4‐ylidene}‐malononitrile (TPDCM) were used as the blue‐, green‐, and red‐light‐emitting comonomers, respectively. It was found that the emission spectra of the resulting copolymers could easily be tuned by varying their DTPA and TPDCM content. Thus with the appropriate red/green/blue (RGB) unit ratio, we were able to obtain white‐light emission from these copolymers. A white‐light‐emitting diode using the polyfluorene copolymer containing 3 % green‐emitting DTPA and 2 % red‐emitting TPDCM (PG3R2) with a structure of indium tin oxide/poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonic acid)/PG3R2/Ca/Al was found to exhibit a maximum brightness of 820 cd m–2 at 11 V with Commission Internationale de L'Eclairage (CIE) coordinates of (0.33,0.35), which are close to the standard CIE coordinates for white‐light emission (0.33,0.33).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号