首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119篇
  免费   1篇
  国内免费   5篇
电工技术   1篇
化学工业   61篇
金属工艺   5篇
建筑科学   1篇
矿业工程   2篇
能源动力   20篇
无线电   4篇
一般工业技术   25篇
冶金工业   5篇
自动化技术   1篇
  2022年   3篇
  2021年   2篇
  2020年   4篇
  2019年   3篇
  2018年   1篇
  2017年   3篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2013年   8篇
  2012年   3篇
  2011年   7篇
  2010年   10篇
  2009年   10篇
  2008年   10篇
  2007年   12篇
  2006年   7篇
  2005年   11篇
  2004年   5篇
  2003年   7篇
  2002年   4篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1996年   1篇
排序方式: 共有125条查询结果,搜索用时 328 毫秒
11.
Calcium-based carbon dioxide sorbents were made in the gas phase by scalable flame spray pyrolysis (FSP) and compared to the ones made by calcination (CAL) of selected calcium precursors. Such flame-made sorbents consisted of nanostructured CaO and CaCO3 with twice as much specific surface area (40-60 m2/g) as the CAL-made sorbents. All FSP-made sorbents exhibited faster and higher CO2 uptake capacity than all CAL-made sorbents at intermediate temperatures. CAL of calcium acetate monohydrate resulted in sorbents with the best CO2 uptake among all CAL-made ones. At higher temperatures both FSP- and CAL-made sorbents (esp. from CaAc2·H2O) exhibited very high initial molar conversions (95%) but sintering contributed to grain growth that reduced the molar conversion down to 50%. In multiple carbonation/decarbonation cycles, the nanostructured FSP-made sorbents demonstrated stable, reversible and high CO2 uptake capacity sustaining maximum molar conversion at about 50% even after 60 such cycles, indicating high potential for CO2 uptake. The top performance of flame-made sorbents is best attributed to their nanostructure (30-50 nm grain size) that allows operation in the reaction-controlled carbonation regime rather than in the diffusion-controlled one when sorbents made with larger particles are employed.  相似文献   
12.
以我国大储量的高岭土为原料,采用化学沉淀法制备超精细的氧化铝粉末。通过对比试验和SEM等设备的检测结果.考察制备过程中溶液浓度,分散剂,防团聚技术对最终产品的影响,探索出了一套适合工业生产纳米氧化铝的工艺。  相似文献   
13.
MgB2 superconductor pellets were synthesized through Mg gas infiltration method using nanosized- and microsized B powders. There was a marked difference in the superconducting properties of the two samples, particularly in the pinning force and dominant pinning mechanism. The microstructures of the samples were observed using HR-TEM and STEM-HAADF, and the results showed that the primary reason for the difference in the superconducting properties is the distribution of the nanosized second-phase particle MgO. Additionally, a feasible reaction model for the Mg gas infiltration method was established. Compared to the Mg liquid infiltration method, the gas infiltration showed better penetrability ability with a small amount of residual Mg. This study presents a novel synthesis process to fabricate an MgB2 pellet with superior density and superconducting properties. This method can be used in multiple applications such as superconducting bearings, compact superconductor magnets, and magnetic shielding.  相似文献   
14.
Nanoscale mullite powder were synthesized via Solgel-SCFD and middle temperature treatment by using AIP( aluminum-isopropoxde ) and TEOS ( tetraethyl orthosdicate) as starting materials. Both of the binary aerogel of alumina-silica and calcined nanoscale materials were investigated by using TG-DSC (thermogravimetry-differential scanning calorimeter), TEM (transmission electron microscope), XRD ( X-Ray diffractometer ) and specific surface area and porosimetry. TG-DSC indicated the removal of most of the volatiles , i. e. 15.98% up to about 700℃ ,and in the DSC curve, existence of two exothermic peak at about 445℃ and 1015℃ may be due to the crystallization of Si-O-Al-O in diphasic gels and mullitization and a small endothermic peak at about 805℃ indicated the decomposition of structural water molecules. On the colligation of the results of TG- DSC, XRD and TEM , the beginning temperature of mullitization in Al2 O3-SiO2 aerogel system can be confirmed at about 1015℃. XRD results also showed the formation of mullite at the range 1100 ~1200℃. TEM and surface area and porosimetry results showed that the nanosized mullite were calcinated at 1100and 1200℃ exhibited size 30nm and 50nm, specific surface area 138.91m2/g and 95.81m2/g.  相似文献   
15.
High surface nanosized rutile TiO2 is prepared via a sol-gel method from an ethylene glycol-based titanium-precursor in the presence of a non-ionic surfactant, at pH 0. Its electrochemical behaviour has been investigated at low temperature using two different potential windows. Typically, the potential window of the rutile system is 1-3 V but the use of an enlarged potential window (0.1-3 V), leads to an excellent reversible capacity of 341 mAh g−1 which is comparable to graphite anodes. The electrochemical performance was investigated by cyclic voltammetry and galvanostatic techniques at temperatures ranging from −40 to 20 °C. Nanosized TiO2 exhibits excellent rate capability (341 mAh g−1 at 20 °C, 197 mAh g−1 at −10 °C, 138 mAh g−1 at −20 °C, and 77 mAh g−1 at −40 °C at a C/5 rate) and good cycling stability. The superior low-temperature electrochemical performance of nanosized rutile TiO2 may make it a promising candidate as lithium-ion battery material.  相似文献   
16.
Si/TiC nanocomposite anode was synthesized by a surface sol-gel method in combination with a following heat-treatment process. Through this process, nanosized Si was homogeneously distributed in a titanium carbide matrix. The electrochemically less active TiC working as a buffer matrix successfully prevented Si from cracking/crumbling during the charging/discharging process. The interspaces in the Si/TiC nanocomposite could offer convenient channels for Li ions to react with active Si. The Si/TiC composite exhibited a reversible charge/discharge capacity of about 1000 mAh g−1 with average discharge capacity fading of 1.8 mAh g−1 (0.18%) from 2nd to 100th cycle, indicating its excellent cyclability when used as anode materials for lithium-ion batteries.  相似文献   
17.
Nanosized lead titanate doped with calcium and lanthanum (PCLT) powder obtained by the sol-gel method was homogeneously mixed with vinylidene fluoride-trifluoroethylene [P(VDF-TrFE)] to form nanocomposites. Several pyroelectric sensors were prepared on porous silicon dioxide, on poly(ethylene terephthalate) (PET) film and on bulk silicon substrates, respectively. The nanocomposite PCLT/P(VDF-TrFE) sensing film was deposited by spin-coating and Ni-Cr film was deposited as the top electrode and absorption layer. Experimental results showed that the substrate of the pyroelectric sensor could significantly affect the specific detectivity. The porous silicon dioxide and PET plastic film substrates could effectively decrease the thermal conductivity and the thermal fluctuation noise of the pyroelectric element, increase the voltage responsivity and the specific detectivity. The results indicated that the specific detectivity of PCLT/P(VDF-TrFE) pyroelectric sensors based on porous silicon dioxide and PET plastic film substrates reached 4.2E6 and 3.4E7 cmHz 1/2 W m 1 respectively, which is about 1-2 orders of magnitude higher than that of the sensors formed under the same condition on the bulk silicon substrate.  相似文献   
18.
《Ceramics International》2020,46(11):18940-18947
In this study, NdAlO3 with perovskite structure was synthesized by the stearic acid method at relatively low temperature. The structural characteristics of the as-synthesized product were identified by TG–DSC, XRD, FT–IR, SEM, and TEM techniques. Using the powders as starting materials, NdAlO3 bulk microwave ceramics were prepared, and the corresponding densification process, microstructural and dielectric properties were studied. The XRD and FI–IR results confirmed that single phase NdAlO3 could be prepared at low temperature by the stearic acid method. A unique two-dimensional platelike morphology with an unevenly dispersed bubble shape structure was observed in the calcined powder. However, the TEM result revealed that the powder calcined at 800 °C had a good dispersity accompanied with narrow particle size distribution within a range of 20–35 nm. The average particle size of 27.3 nm was in accordance with that calculated from the XRD data. Using the powder calcined at 800 °C as raw materials, the as-obtained NdAlO3 ceramics sintered at 1500 °C for 4 h possessed the highest density and favorable combined microwave dielectric properties (i.e., εr = 23.02, Q × f = 65320 GHz, and τf = −32.4 ppm/°C). The present work developed a fast, energy-efficient approach to synthesize NdAlO3 powder used as promising raw materials of microwave dielectric ceramics.  相似文献   
19.
 Alumina continues to play an important role in the materials industry with the Bayer process still providing alumina after a 100 years of continuous processing. In addition to traditional applications of alumina, alumina is being advanced as a major part of the new frontier on nanophase materials and nanophase technology. High surface area corundum has been synthesized using a rapid totally ”green” hydrothermal process for forming nanosized diaspore precursor to nanosized corundum. Surface areas of the nanosized corundum are in excess of 160 square meters per gram. High temperature solution calorimetry show that gamma alumina becomes the energetically stable phase relative to corundum at specific surface areas greater than 125 square meters per gram. These data provide a thermodynamic basis for the equilibrium relationships among the alumina phases in the nanocrystalline region. Received: 19 November 1997 / Accepted: 22 December 1997  相似文献   
20.
纳米硫酸钡增强增韧尼龙66   总被引:1,自引:0,他引:1  
通过熔融共混法制备了纳米硫酸钡增强增韧尼龙66复合材料。研究了纳米硫酸钡含量对增强增韧尼龙66复合材料力学性能的影响。结果表明,纳米硫酸钡对尼龙66有显著的增强增韧作用。尼龙66的韧性、刚性和强度随着纳米硫酸钡含量的增加先增后减,在纳米硫酸钡质量分数为3%时,力学性能最优;对比空白样,缺口冲击强度提高了17.1%,弯曲强度和模量分别提高了5.74%和11.57%,拉伸强度和模量稍有提高。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号