首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119篇
  免费   1篇
  国内免费   5篇
电工技术   1篇
化学工业   61篇
金属工艺   5篇
建筑科学   1篇
矿业工程   2篇
能源动力   20篇
无线电   4篇
一般工业技术   25篇
冶金工业   5篇
自动化技术   1篇
  2022年   3篇
  2021年   2篇
  2020年   4篇
  2019年   3篇
  2018年   1篇
  2017年   3篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2013年   8篇
  2012年   3篇
  2011年   7篇
  2010年   10篇
  2009年   10篇
  2008年   10篇
  2007年   12篇
  2006年   7篇
  2005年   11篇
  2004年   5篇
  2003年   7篇
  2002年   4篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1996年   1篇
排序方式: 共有125条查询结果,搜索用时 156 毫秒
71.
采用双季铵盐模板剂溴代1,4-二氮甲基哌啶基-丁烷,通过动态水热晶化法成功制备了纳米级ZSM-12分子筛。采用X射线衍射、扫描电镜、透射电镜、红外光谱分析及N2吸附-脱附技术等测试方法对所得颗粒进行了研究。所合成的颗粒呈长条形状,长约150 nm,宽约30 nm。所得的ZSM-12沸石结晶体结构完整,无明显骨架缺陷,富含微孔和介孔孔隙。介孔孔隙来源于ZSM-12纳米晶粒之间的堆积孔隙。在酸分布上,所得的HZSM-12分子筛的中强酸及B酸比例较多,使得该沸石在催化反应中具备优良的反应活性。  相似文献   
72.
以纳米氧化锌为催化剂,通过两步制备法:乳酸(LA)低聚物制备和低聚物裂解环化,制备左旋丙交酯(L-LA).进一步采用红外光谱、核磁共振、差式扫描量热法对所制备L-LA样品进行深入表征.研究旨在优化丙交酯的制备工艺条件以提高产品收率,因而详细探究了催化剂含量、脱结合水反应温度、反应时间、馏出温度等参数对L-LA收率的影响...  相似文献   
73.
Alumina-based ceramic cores, widely applied to cast alloy, have been restricted by the increased complexity of castings, the resultant complex equipment and cost. In this research, to address the aforesaid disadvantages, direct ink writing, a green additive manufacturing method, is utilized to directly fabricate a new kind of nanosized MgO strengthened alumina-based ceramic cores. Slurries with various compositions exhibits ideal shear-thinning behaviors, owing to the hydrogen bond formed between polyvinylpyrrolidone and kaolin molecules. We notice that introducing nanosized MgO reduces drying shrinkage of green specimens and greatly promotes liquid-phase sintering, leading to rather more densified samples. Overall, it is anticipated that the current approach is effective in rapidly manufacturing alumina-based ceramics and some other ceramics with high strength, low shrinkage and high quality.  相似文献   
74.
《Ceramics International》2020,46(1):196-203
A nanosized alumina coating was synthesized on the surface of fused silica particles by electrostatic attraction. The effects of the coated fused silica particles on the cristobalite crystallization behavior, microstructure evolution, and flexural strength of silica-based ceramic cores were investigated. X-ray diffraction (XRD) was used to characterize phase transformations in the specimens, and the results indicated that the formed nanosized alumina coatings could retard cristobalite formation by inducing compressive stress on the fused silica particle surface. A mullite phase was also found due to the reaction of the nanosized alumina coating and the surface of the fused silica when the sintering temperature was increased to 1300 °C. Analysis using scanning electron microscopy equipped with energy dispersive spectrometry (SEM/EDS) suggested that alumina nanoparticles in the coated layer dispersed into a liquid phase and formed a barrier layer to impede the movement of the liquid phase, preventing the pore-filling process and increasing the open porosity of the ceramic specimens. Flexural strengths at room temperature were tested, indicating that increases in the sintering temperature of the specimens without coated fused silica powders had little effect on flexural strength. However, the flexural strength of the specimens with coated fused silica powders increased with increases in sintering temperature. The improvement in flexural strength was related to the reinforcement by sintering necks between particles and the improvement in the strength of the coated fused silica powder.  相似文献   
75.
Hydrogen has attracted wide attention in the field of new energy, triggering a comprehensive study of hydrogen production, storage and application. This paper mainly studies the hydrogen storage capacity of magnesium-based materials with nanostructure. The reversible hydrogen capacity of Mg-based hydrogen storage materials can reach 7.6 wt%, but due to its poor kinetic and thermodynamic properties, its hydrogen storage performance is not as good as other hydrogen storage materials. In order to reduce the desorption temperature of materials, many studies have been carried out. Alloying, nanostructure and adding catalyst are feasible methods to improve the properties of Mg-based hydrogen storage alloys. By adding catalyst and alloy with other transition elements, the dehydrogenation temperature of magnesium-based materials has been reduced to less than 200 °C. The hydrogen storage of magnesium-based alloys has been practically applied.  相似文献   
76.
A Pt‐Ru/2 % Ce/(θ+α)‐Al2O3 nanosized catalyst was developed for selective catalytic oxidation of CH4 to synthesis gas. The process was carried out entirely with the formation of synthesis gas at high selectivity by H2 and CO with H2:CO = 2.0 ratio only at Pt:Ru = 2:1 or 1:1 atomic ratio and short contact time on Pt‐, Ru‐, and Pt‐Ru low‐percentage catalysts. Samples, which were reduced by H2 at high temperature, presented a mixture of Pt‐, Ru‐, and Pt‐Ru nanosized particles, its alloy in the mixed catalysts. The correlation between experimental results and data of physicochemical research was established. The activity together with physicochemical properties and quantum chemical calculations for the developed low‐percentage Pt‐Ru catalysts was investigated.  相似文献   
77.
On the shell theory on the nanoscale with surface stresses   总被引:1,自引:0,他引:1  
Below we discuss the derivation of the governing nonlinear shell equations taking into account the surface stresses. The surface effects are significant for the modeling of some structures as nanofilms, nanoporous materials and other nano-size structures. In particular, the surface stresses are responsible for the size effect, i.e. dependence of the material properties on the specimen size. The theory of elasticity with surface stresses is applied to the modeling of shells with nano-scaled thickness. It will be shown that the resultant stress and couple stress tensors can be represented as a sum of two terms. The first term in the sum depends on the stress distribution in the bulk material while the second one relates to the surface stresses. Hence, the resultant stress and couple stress tensors are linear functions with respect to the surface stresses. As an example the effective stiffness properties of a linear elastic Cosserat shells taking into account the surface stresses are presented.  相似文献   
78.
王婷  贺晓莹 《辽宁化工》2010,39(7):764-765,790
考察了掺杂改性后纳米TiO2的光催化性能,在产品光催化活性的测定中,选择甲基橙作为降解的模型化合物,提高了光催化降解效率,降解和脱色效果都比较好。  相似文献   
79.
《粉末冶金学》2013,56(3):360-365
Abstract

This study aims to compare the effect of Al2O3 nanoparticle additions on the densification and mechanical properties of the injection moulded 316L stainless steels. The 316L stainless steel and Al2O3 nanoparticles were dry mixed and moulded using a wax based binder. The critical powder loading for injection moulding were 60 vol.-% for all samples. Debinding process was performed in solvent using thermal method. After the debinding process, the samples were sintered at 1405°C for 60 and 120 min under vacuum. Metallographic examination was conducted to determine the extend of densification and the corresponding microstructural changes. The sintered samples were characterised by measuring tensile strength, hardness and wear behaviour. Wear loss was determined for all the samples after wear testing. All the powders, fracture surfaces of moulded and sintered samples were examined using scanning electron microscope. The sintered density of straight as well as Al2O3 nanoparticles reinforced injection moulded 316L stainless steels increases with the increase in sintering time. The additions of Al2O3 nanoparticles improve the hardness and wear resistance with the increase of sintering time.  相似文献   
80.
The influence of CsCl content on the void evolution in (80GeS2-20Ga2S3)100-x(CsCl)x, x = 0; 5; 10; 15, chalcogenide glasses and changes of the optical response of these glasses due to CsCl addition are investigated. It is shown that structural agglomeration of voids occurs at addition and increasing of CsCl amount in base glasses. Supersaturation of GeS2-Ga2S3-CsCl glasses by CsCl results in the contraction of void volumes in (80GeS2-20Ga2S3)85(CsCl)15. By applying positron-positronium decomposition algorithm it was established that CsCl not only transforms voids in glass, but also forms new positron-trapping sites in Ge-Ga-S glassy matrix. Therefore, CsCl addition results in the shift of fundamental transmission edge in the visible region. It is shown that doping by larger concentrations of CsCl may lead to “supersaturation” of base glasses and that adding 10 mol% of CsCl is apparently an optimal doping level in view of further modification of glasses with rare-earth ions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号