首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3505篇
  免费   207篇
  国内免费   52篇
电工技术   26篇
综合类   80篇
化学工业   1374篇
金属工艺   52篇
机械仪表   198篇
建筑科学   48篇
矿业工程   17篇
能源动力   27篇
轻工业   1073篇
水利工程   33篇
石油天然气   174篇
武器工业   2篇
无线电   180篇
一般工业技术   313篇
冶金工业   33篇
原子能技术   18篇
自动化技术   116篇
  2024年   8篇
  2023年   67篇
  2022年   480篇
  2021年   483篇
  2020年   131篇
  2019年   88篇
  2018年   60篇
  2017年   70篇
  2016年   100篇
  2015年   130篇
  2014年   167篇
  2013年   170篇
  2012年   189篇
  2011年   207篇
  2010年   121篇
  2009年   79篇
  2008年   59篇
  2007年   107篇
  2006年   134篇
  2005年   122篇
  2004年   125篇
  2003年   117篇
  2002年   124篇
  2001年   94篇
  2000年   52篇
  1999年   51篇
  1998年   50篇
  1997年   57篇
  1996年   20篇
  1995年   35篇
  1994年   22篇
  1993年   8篇
  1992年   5篇
  1991年   3篇
  1990年   6篇
  1989年   4篇
  1988年   7篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1957年   1篇
排序方式: 共有3764条查询结果,搜索用时 15 毫秒
61.
利用数字化学发光成像系统对氢氧系统气相爆轰反应区结构进行直接实验观察. 实验采用 ICCD(Intensified Charge-Coupled Device)、 DG5335 延时器和中心波长 312 nm、半带宽 15 nm 的滤光片,精确设置爆轰波、 ICCD 之间的同步控制,得到不同初压、不同氩稀释度的爆轰 OH 自发辐射光图像. 结果表明: 反应区在空间上不均匀,其阵面形状不是平面且随时间不断改变. 马赫杆后的 OH 自发辐射光强较入射激波后大. 随着初压升高,OH 自发辐射光强增大,反应阵面也近似趋于平面. 随着氩稀释度的增大,OH 自发辐射光强明显衰减.  相似文献   
62.
Lignins were isolated from maize stem and sugarcane bagasse by using mild dioxane or acidic dioxane solution. The result of nitrobenzene oxidation of the isolated lignins shows that there is a high proportion of p‐hydroxyphenyl alcohol in the lignins of maize stem and sugarcane bagasse. The lignins isolated from maize stem and sugarcane bagasse have relatively same value of the weight‐average (M w = 3405–3868 g mol−1) and number‐average (M n = 1411–1612 g mol−1) molecular weights, and polydispersity (M w/M n = 2.24–2.51). Acidic dioxane treatment did attack the β‐aryl ether structures in lignins, in particular for β‐aryl syringyl ethers, and broke the ester bonds between arabinose and ferulic acid that etherified to lignins, and it also cleaved lots of bonds in hemicellulosic polymer. The proportion of β‐O‐4 (threo) guaiacyl units is higher than that of β‐O‐4 (erthreo) guaiacyl units. The phenyl glycoside and benzyl ether linkages between lignin and hemicelluloses are also demonstrated in NMR analysis. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   
63.
Malignant melanoma is a lethal skin cancer containing melanoma-initiating cells (MIC) implicated in tumorigenesis, invasion, and drug resistance, and is characterized by the elevated expression of stem cell markers, including CD133. The siRNA knockdown of CD133 enhances apoptosis induced by the MEK inhibitor trametinib in melanoma cells. This study investigates the underlying mechanisms of CD133’s anti-apoptotic activity in patient-derived BAKP and POT cells, harboring difficult-to-treat NRASQ61K and NRASQ61R drivers, after CRISPR-Cas9 CD133 knockout or Dox-inducible expression of CD133. MACS-sorted CD133(+) BAKP cells were conditionally reprogrammed to derive BAKR cells with sustained CD133 expression and MIC features. Compared to BAKP, CD133(+) BAKR exhibit increased cell survival and reduced apoptosis in response to trametinib or the chemotherapeutic dacarbazine (DTIC). CRISPR-Cas9-mediated CD133 knockout in BAKR cells (BAKR-KO) re-sensitized cells to trametinib. CD133 knockout in BAKP and POT cells increased trametinib-induced apoptosis by reducing anti-apoptotic BCL-xL, p-AKT, and p-BAD and increasing pro-apoptotic BAX. Conversely, Dox-induced CD133 expression diminished apoptosis in both trametinib-treated cell lines, coincident with elevated p-AKT, p-BAD, BCL-2, and BCL-xL and decreased activation of BAX and caspases-3 and -9. AKT1/2 siRNA knockdown or inhibition of BCL-2 family members with navitoclax (ABT-263) in BAKP-KO cells further enhanced caspase-mediated apoptotic PARP cleavage. CD133 may therefore activate a survival pathway where (1) increased AKT phosphorylation and activation induces (2) BAD phosphorylation and inactivation, (3) decreases BAX activation, and (4) reduces caspases-3 and -9 activity and caspase-mediated PARP cleavage, leading to apoptosis suppression and drug resistance in melanoma. Targeting nodes of the CD133, AKT, or BCL-2 survival pathways with trametinib highlights the potential for combination therapies for NRAS-mutant melanoma stem cells for the development of more effective treatments for patients with high-risk melanoma.  相似文献   
64.
Hematopoietic stem cells (HSCs) are the only cell population that possesses both a self-renewing capacity and multipotency, and can give rise to all lineages of blood cells throughout an organism’s life. However, the self-renewal capacity of HSCs is not infinite, and cumulative evidence suggests that HSCs alter their function and become less active during organismal aging, leading ultimately to the disruption of hematopoietic homeostasis, such as anemia, perturbed immunity and increased propensity to hematological malignancies. Thus, understanding how HSCs alter their function during aging is a matter of critical importance to prevent or overcome these age-related changes in the blood system. Recent advances in clonal analysis have revealed the functional heterogeneity of murine HSC pools that is established upon development and skewed toward the clonal expansion of functionally poised HSCs during aging. In humans, next-generation sequencing has revealed age-related clonal hematopoiesis that originates from HSC subsets with acquired somatic mutations, and has highlighted it as a significant risk factor for hematological malignancies and cardiovascular diseases. In this review, we summarize the current fate-mapping strategies that are used to track and visualize HSC clonal behavior during development or after stress. We then review the age-related changes in HSCs that can be inherited by daughter cells and act as a cellular memory to form functionally distinct clones. Altogether, we link aging of the hematopoietic system to HSC clonal evolution and discuss how HSC clones with myeloid skewing and low regenerative potential can be expanded during aging.  相似文献   
65.
Multiple sclerosis (MS) is a neurological disorder of autoimmune aetiology. Experimental therapies with the use of mesenchymal stem cells (MSCs) have emerged as a response to the unmet need for new treatment options. The unique immunomodulatory features of stem cells obtained from Wharton’s jelly (WJ-MSCs) make them an interesting research and therapeutic model. Most WJ-MSCs transplants for multiple sclerosis use intrathecal administration. We studied the effect of cerebrospinal fluid (CSF) obtained from MS patients on the secretory activity of WJ-MSCs and broaden this observation with WJ-MSCs interactions with human oligodendroglia cell line (OLs). Analysis of the WJ-MSCs secretory activity with use of Bio-Plex Pro™ Human Cytokine confirmed significant and diverse immunomodulatory potential. Our data reveal rich WJ-MSCs secretome with markedly increased levels of IL-6, IL-8, IP-10 and MCP-1 synthesis and a favourable profile of growth factors. The addition of MS CSF to the WJ-MSCs culture caused depletion of most proteins measured, only IL-12, RANTES and GM-CSF levels were increased. Most cytokines and chemokines decreased their concentrations in WJ-MSCs co-cultured with OLs, only eotaxin and RANTES levels were slightly increased. These results emphasize the spectrum of the immunomodulatory properties of WJ-MSCs and show how those effects can be modulated depending on the transplantation milieu.  相似文献   
66.
In this study, we fabricated a three-dimensional (3D) scaffold using industrial polylactic acid (PLA), which promoted the proliferation and differentiation of human neural stem cells. An industrial PLA 3D scaffold (IPTS) cell chip with a square-shaped pattern was fabricated via computer-aided design and printed using a fused deposition modeling technique. To improve cell adhesion and cell differentiation, we coated the IPTS cell chip with gold nanoparticles (Au-NPs), nerve growth factor (NGF) protein, an NGF peptide fragment, and sonic hedgehog (SHH) protein. The proliferation of F3.Olig2 neural stem cells was increased in the IPTS cell chips coated with Au-NPs and NGF peptide fragments when compared with that of the cells cultured on non-coated IPTS cell chips. Cells cultured on the IPTS-SHH cell chip also showed high expression of motor neuron cell-specific markers, such as HB9 and TUJ-1. Therefore, we suggest that the newly engineered industrial PLA scaffold is an innovative tool for cell proliferation and motor neuron differentiation.  相似文献   
67.
Weight loss and metabolic activity influence outcome after allogeneic stem cell transplantation (alloSCT). This study evaluates pre-conditioning Leptin, a peptide hormone involved in metabolism and immune homeostasis, as a prognostic factor for survival, relapse and non-relapse mortality (NRM) following alloSCT. Leptin serum levels prior to conditioning were determined in a cohort of patients transplanted for various hematologic malignancies (n = 524) and correlated retrospectively with clinical outcome. Findings related to patients with acute leukemia (AL) from this sample were validated in an independent cohort. Low pre-conditioning serum Leptin was an independent prognostic marker for increased risk of relapse (but not of NRM and overall mortality) following alloSCT for AL of intermediate and advanced stage (beyond first complete remission). Multivariate analysis revealed a hazard ratio (HR) for relapse of 0.75 per log2 increase (0.59–0.96, p = 0.020). This effect was similar in an independent validation cohort. Pre-conditioning serum Leptin was validated as a prognostic marker for early relapse by fitting the multivariate Cox model to the validation data. Pre-conditioning serum Leptin levels may serve as an independent prognostic marker for relapse following alloSCT in intermediate and advanced stage AL patients. Prospective studies are required to prove whether serum Leptin could be used for guiding nutritional intervention in patients with AL undergoing alloSCT.  相似文献   
68.
Self-maintaining hematopoietic stem cells are a cell population that is primarily ‘at risk’ to malignant transformation, and the cell-of-origin for some leukemias. Tissue-specific stem cells replenish the different types of functional cells within a particular tissue to meet the demands of an organism. For hematopoietic stem cells, this flexibility is important to satisfy the changing requirements for a certain type of immune cell, when needed. From studies of the natural history of childhood acute lymphoblastic leukemia, an initial oncogenic and prenatal insult gives rise to a preleukemic clone. At least a second genomic insult is needed that gives rise to a leukemia stem cell: this cell generates a hierarchy of leukemia cells. For some leukemias, there is evidence to support the concept that one of the genomic insults leads to dysregulation of the tissue homeostatic role of hematopoietic stem cells so that the hierarchy of differentiating leukemia cells belongs to just one cell lineage. Restricting the expression of particular oncogenes in transgenic mice to hematopoietic stem and progenitor cells led to different human-like lineage-restricted leukemias. Lineage restriction is seen for human leukemias by virtue of their sub-grouping with regard to a phenotypic relationship to just one cell lineage.  相似文献   
69.
It is now well understood that the bone marrow (BM) compartment can sense systemic inflammatory signals and adapt through increased proliferation and lineage skewing. These coordinated and dynamic alterations in responding hematopoietic stem and progenitor cells (HSPCs), as well as in cells of the bone marrow niche, are increasingly viewed as key contributors to the inflammatory response. Growth factors, cytokines, metabolites, microbial products, and other signals can cause dysregulation across the entire hematopoietic hierarchy, leading to lineage-skewing and even long-term functional adaptations in bone marrow progenitor cells. These alterations may play a central role in the chronicity of disease as well as the links between many common chronic disorders. The possible existence of a form of “memory” in bone marrow progenitor cells is thought to contribute to innate immune responses via the generation of trained immunity (also called innate immune memory). These findings highlight how hematopoietic progenitors dynamically adapt to meet the demand for innate immune cells and how this adaptive response may be beneficial or detrimental depending on the context. In this review, we will discuss the role of bone marrow progenitor cells and their microenvironment in shaping the scope and scale of the immune response in health and disease.  相似文献   
70.
Drug-induced liver injury (DILI) is one of the leading causes of acute liver injury. Many factors may contribute to the susceptibility of patients to this condition, making DILI a global medical problem that has an impact on public health and the pharmaceutical industry. The use of mesenchymal stem cells (MSCs) has been at the forefront of regenerative medicine therapies for many years, including MSCs for the treatment of liver diseases. However, there is currently a huge gap between these experimental approaches and their application in clinical practice. In this concise review, we focus on the pathophysiology of DILI and highlight new experimental approaches conceived to improve cell-based therapy by the in vitro preconditioning of MSCs and/or the use of cell-free products as treatment for this liver condition. Finally, we discuss the advantages of new approaches, but also the current challenges that must be addressed in order to develop safer and more effective procedures that will allow cell-based therapies to reach clinical practice, enhancing the quality of life and prolonging the survival time of patients with DILI.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号