首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   184篇
  免费   41篇
综合类   1篇
化学工业   137篇
轻工业   16篇
无线电   19篇
一般工业技术   48篇
自动化技术   4篇
  2024年   1篇
  2023年   11篇
  2022年   11篇
  2021年   25篇
  2020年   21篇
  2019年   23篇
  2018年   12篇
  2017年   10篇
  2016年   7篇
  2015年   5篇
  2014年   11篇
  2013年   10篇
  2012年   17篇
  2011年   17篇
  2010年   8篇
  2009年   8篇
  2008年   11篇
  2007年   8篇
  2006年   1篇
  2005年   3篇
  2004年   3篇
  2003年   1篇
  1980年   1篇
排序方式: 共有225条查询结果,搜索用时 78 毫秒
51.
Programmable DNA nanostructures are a new class of biocompatible, nontoxic nanomaterials. Nevertheless, their application in the field of biomedical research is still in its infancy, especially as drug delivery vehicles for gene therapy. In this study, a GTPase Rab26 was investigated as a new potential therapeutic target using a precisely tailored DNA nanoprism for targeted lung cancer therapy. Specifically, a DNA nanoprism platform with tunable targeting and siRNA loading capability is designed and synthesized. The as-prepared DNA prisms were decorated with two functional units: a Rab26 siRNA as the drug and MUC-1 aptamers as a targeting moiety for non-small cell lung cancer. The number and position of both siRNA and MUC-1 aptamers can be readily tuned by switching two short, single-stranded DNA. Native polyacrylamide gel electrophoresis (PAGE) and dynamic light scattering technique (DLS) demonstrate that all nanoprisms with different functionalities are self-assembled with high yield. It is also found that the cellular uptake of DNA prisms is proportional to the aptamer number on each nanoprism, and the as-prepared DNA nanoprism show excellent anti-cancer activities and targeting capability. This study suggests that by careful design, self-assembled DNA nanostructures are highly promising, customizable, multifunctional nanoplatforms for potential biomedical applications, such as personalized precision therapy.  相似文献   
52.
53.
Breast cancer is one of the most commonly occurring cancers in women globally and is the primary cause of cancer mortality in females. BC is highly heterogeneous with various phenotypic expressions. The overexpression of HER2 is responsible for 15–30% of all invasive BC and is strongly associated with malignant behaviours, poor prognosis and decline in overall survival. Molecular imaging offers advantages over conventional imaging modalities, as it provides more sensitive and specific detection of tumours, as these techniques measure the biological and physiological processes at the cellular level to visualise the disease. Early detection and diagnosis of BC is crucial to improving clinical outcomes and prognosis. While HER2-specific antibodies and nanobodies may improve the sensitivity and specificity of molecular imaging, the radioisotope conjugation process may interfere with and may compromise their binding functionalities. Aptamers are single-stranded oligonucleotides capable of targeting biomarkers with remarkable binding specificity and affinity. Aptamers can be functionalised with radioisotopes without compromising target specificity. The attachment of different radioisotopes can determine the aptamer’s functionality in the treatment of HER2(+) BC. Several HER2 aptamers and investigations of them have been described and evaluated in this paper. We also provide recommendations for future studies with HER2 aptamers to target HER2(+) BC.  相似文献   
54.
Molecular imprinting refers to templated polymerization with rationally designed monomers, and this is a general method to prepare stable and cost‐effective ligands. This attractive concept however suffers from low affinity, low specificity, and limited signaling mechanisms for binding. Acrydite‐modified DNA oligonucleotides can be readily copolymerized into acrylic polymers. With molecular recognition and catalytic functions, such functional DNAs are recently shown to enhance the performance of molecularly imprinted polymers (MIPs) in a few ways. First, DNA aptamers are used as macromonomers to enhance binding affinity and specificity of MIPs. Second, DNA can help produce optical signals to follow binding events. Third, imprinting can also improve the performance of catalytic DNA by enhancing its activity and specificity toward the template substrate. Finally, MIP is shown to help aptamer selection. Bulk imprinting, nanoparticle imprinting, and surface imprinting are all demonstrated with DNA. Since both DNA and synthetic polymers are cost effective and stable, their hybrid materials still possess such properties while enhancing the function of each component. This review covers recent developments on the abovementioned aspects of DNA‐containing MIPs, a field just emerged in the last five years, and future research directions are discussed toward the end.  相似文献   
55.
Although mitochondrial dysfunction has been implicated in aging, physical function decline, and several age-related diseases, an accessible and affordable measure of mitochondrial health is still lacking. In this study we identified the proteomic signature of muscular mitochondrial oxidative capacity in plasma. In 165 adults, we analyzed the association between concentrations of plasma proteins, measured using the SOMAscan assay, and skeletal muscle maximal oxidative phosphorylation capacity assessed as post-exercise phosphocreatine recovery time constant (τPCr) by phosphorous magnetic resonance spectroscopy. Out of 1301 proteins analyzed, we identified 87 proteins significantly associated with τPCr, adjusting for age, sex, and phosphocreatine depletion. Sixty proteins were positively correlated with better oxidative capacity, while 27 proteins were correlated with poorer capacity. Specific clusters of plasma proteins were enriched in the following pathways: homeostasis of energy metabolism, proteostasis, response to oxidative stress, and inflammation. The generalizability of these findings would benefit from replication in an independent cohort and in longitudinal analyses.  相似文献   
56.
57.
58.
59.
Boron neutron capture therapy (BNCT) is a binary radiotherapeutic approach to the treatment of malignant tumors, especially glioblastoma, the most frequent and incurable brain tumor. For successful BNCT, a boron-containing therapeutic agent should provide selective and effective accumulation of 10B isotope inside target cells, which are then destroyed after neutron irradiation. Nucleic acid aptamers look like very prospective candidates for carrying 10B to the tumor cells. This study represents the first example of using 2′-F-RNA aptamer GL44 specific to the human glioblastoma U-87 MG cells as a boron delivery agent for BNCT. The closo-dodecaborate residue was attached to the 5′-end of the aptamer, which was also labeled by the fluorophore at the 3′-end. The resulting bifunctional conjugate showed effective and specific internalization into U-87 MG cells and low toxicity. After incubation with the conjugate, the cells were irradiated by epithermal neutrons on the Budker Institute of Nuclear Physics neutron source. Evaluation of the cell proliferation by real-time cell monitoring and the clonogenic test revealed that boron-loaded aptamer decreased specifically the viability of U-87 MG cells to the extent comparable to that of 10B-boronophenylalanine taken as a control. Therefore, we have demonstrated a proof of principle of employing aptamers for targeted delivery of boron-10 isotope in BNCT. Considering their specificity, ease of synthesis, and large toolkit of chemical approaches for high boron-loading, aptamers provide a promising basis for engineering novel BNCT agents.  相似文献   
60.
Subtle change : Spatiotemporal modulation of individual protein subdomains with light as the trigger signal becomes possible by using bivalent aptamers and introducing photolabile “caging groups” to switch individual aptamer modules ON or OFF differentially. To the best of our knowledge, this is the first study to show that it is possible to modulate individual domain activity in aptamers, and thus also domain activity in proteins, with light.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号