首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1550篇
  免费   153篇
  国内免费   8篇
综合类   62篇
化学工业   336篇
金属工艺   1篇
机械仪表   3篇
建筑科学   2篇
能源动力   1篇
轻工业   1254篇
水利工程   2篇
石油天然气   1篇
无线电   7篇
一般工业技术   22篇
原子能技术   2篇
自动化技术   18篇
  2024年   11篇
  2023年   17篇
  2022年   75篇
  2021年   86篇
  2020年   56篇
  2019年   39篇
  2018年   47篇
  2017年   45篇
  2016年   46篇
  2015年   66篇
  2014年   75篇
  2013年   92篇
  2012年   159篇
  2011年   140篇
  2010年   76篇
  2009年   61篇
  2008年   68篇
  2007年   87篇
  2006年   90篇
  2005年   62篇
  2004年   61篇
  2003年   39篇
  2002年   29篇
  2001年   33篇
  2000年   27篇
  1999年   16篇
  1998年   15篇
  1997年   10篇
  1996年   12篇
  1995年   15篇
  1994年   13篇
  1993年   7篇
  1992年   5篇
  1991年   5篇
  1990年   6篇
  1989年   4篇
  1988年   7篇
  1987年   6篇
  1986年   2篇
  1984年   1篇
排序方式: 共有1711条查询结果,搜索用时 328 毫秒
51.
酶法制备花生粕醒酒多肽   总被引:3,自引:0,他引:3  
宁庆鹏  王常青  方甜  白云云  陈彤 《食品科学》2016,37(13):173-177
为更合理有效地利用花生粕资源,制备具有醒酒作用的花生粕多肽,本实验以Alcalase AF 2.4L蛋白酶酶法制备花生粕醒酒肽,经分级分离后,通过体外和动物实验验证其醒酒效果。结果表明,花生粕醒酒肽制备最佳工艺条件为:酶解时间3 h、酶解温度35 ℃、pH 9.5及料液比1∶30(m/V)。该条件下乙醇脱氢酶(alcoholdehydrogenase,ADH)激活率及多肽得率均较高。经分级分离后,分子质量在1 000~3 000 D的多肽对ADH激活作用最强,激活率为30.47%。G25凝胶色谱分析表明,花生粕多肽中小于3 000 D的多肽占89.55%,ADH激活率为29.25%。动物实验证明,花生粕多肽对小鼠有显著的防醉醒酒作用。小鼠血液乙醇含量测定结果表明,高剂量的花生粕多肽在60~90 min内能显著降低小鼠血液中的乙醇含量。  相似文献   
52.
本文以中性蛋白酶生产菌B.subtilisAS1.398为出发菌,用NTG与紫外辐照相结合的方法对其进行复合诱变,筛选到一株蛋白酶活性明显高于出发菌的正突变株,命名为B.subtilisML。通过对该突变株蛋白酶活性曲线的绘制、酶作用最适PH的确定、所产一的酶性质的分析及比酶活性的测定,发现该突变株扩酶活性比AS1.398至少高出30%,最适反应PH7-8,酶活性受EDTA的强烈抑制,其突变位点很  相似文献   
53.
金线鱼肝胰脏蛋白酶激活提取条件的优化   总被引:2,自引:1,他引:1  
用响应面法对金线鱼肝胰脏蛋白酶的激活及提取条件进行了优化。比较了不同激活剂的激活效果。研究了提取时间和pH值交互作用对蛋白酶活力的影响。结果表明:肠提液与CaCl2协同作为激活剂的激活效果最好。优化后激活时间为6 h,激活温度为27℃,肠提液质量分数为7%,CaCl2浓度为5.20 mmol/L,酶活力为1578.14 U/(g.min)。肝胰脏蛋白酶最佳提取条件为:提取时间8.5 h,提取温度11℃,pH 5.4,酶活力为1431 U/(g.min)。蛋白酶复性电泳结果说明酶活力增加显著。  相似文献   
54.
本实验以藜麦蛋白为原料,采用碱性蛋白酶、复合蛋白酶、风味蛋白酶、木瓜蛋白酶、中性蛋白酶分别对藜麦蛋白进行水解,制备藜麦蛋白肽。通过单因素实验对五种酶水解制备的藜麦蛋白肽以蛋白水解度、DPPH自由基清除能力、·OH自由基清除能力、ABTS+自由基清除能力、·O2-自由基清除能力为测定指标,研究五种蛋白酶对藜麦蛋白的水解能力和抗氧化活性影响,选出效果相对较佳的酶水解工艺。综合各指标的结果表明,碱性蛋白酶和复合蛋白酶水解能力较强,制备的藜麦蛋白肽抗氧化活性较其他两种酶更好。碱性蛋白酶和复合蛋白酶最佳酶解工艺分别为:酶与底物比0.5%(w/w),底物与水为1∶25(w/v),水解温度50℃,水解时间5h,pH10.0;酶与底物比0.5%(w/w),底物与水为1∶25(w/v),水解温度55℃,水解时间5h,pH8.0。本研究为藜麦蛋白的后期的深加工利用提供一定理论依据。  相似文献   
55.
蛋白酶的生产和应用(上)   总被引:5,自引:0,他引:5  
为充分了解蛋白酶,该文从蛋白酶的分类与底物专一性、微生物蛋白酶的生产等方面介绍了蛋白酶。蛋白酶按活性中心可分为丝氨酸蛋白酶、天门冬氨酸蛋白酶、半胱氨酸蛋白酶和金属蛋白酶;按最适pH值来分又分酸性蛋白酶、中性蛋白酶和碱性蛋白酶。微生物蛋白酶的产生与微生物生长有关,合成受分解代谢阻遏的调控和底物厦其类似物的诱导。并介绍了生产蛋白酶的微生物。  相似文献   
56.
The yeasts used in fuel ethanol manufacture are unable to metabolize soluble proteins. The PEP4 gene, encoding a vacuolar aspartyl protease in Saccharomyces cerevisiae, was either secretively or cell‐surface anchored expressed in industrial ethanol‐producing S. cerevisiae. The obtained recombinant strains APA (expressing the protease secretively) and APB (expressing the protease on the cell wall) were studied under ethanol fermentation conditions in feed barley cultures. The effects of expression of the protease on product formation, growth and cell protein content were measured. The biomass yield of the wild‐type was clearly lower than that of the recombinant strains (0.578 ± 0.12 g biomass/g glucose for APA and 0.582 ± 0.08 g biomass/g glucose for APB). In addition, nearly 98–99% of the theoretical maximum level of ethanol yield was achieved (relative to the amount of substrate consumed) for the recombinant strains, while limiting the nitrogen source resulted in dissatisfactory fermentation for the wild‐type and more than 30 g/l residual sugar was detected at the end of fermentation. In addition, higher growth rate, viability and lower yields of byproducts such as glycerol and pyruvic acid for recombinant strains were observed. Expressing acid protease can be expected to lead to a significant increase in ethanol productivity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
57.
Four proteases: trypsin, protease A, pepsin, and protease M were selected to modify whey protein concentrate (WPC) at a low degree of hydrolysis (0.1, 0.2, and 0.3%) before adjusting to pH 2.0 and heating at 90°C to gain insight into the influence of proteolysis on fibril formation. The kinetics of fibril formation were performed on native and modified WPC using the fluorescent dye thioflavin T in conjunction with transmission electron microscopy and far-UV circular dichroism spectroscopy for the morphological and secondary structural analyses. The change in surface hydrophobicity and content of free sulfhydryl groups were also observed during the formation of fibrils for the native and modified WPC. The content of aggregation and thioflavin T kinetic data indicated that the ability of fibril formation was apparently different for WPC modified by the 4 proteases. Whey protein concentrate modified by trypsin aggregated more during heating and the fibril formation rate was faster than that of the native WPC. Whey protein concentrate modified by the other proteases showed slower aggregation with worse amyloid fibril morphology. Compared with the native WPC, the structure of WPC changed differently after being modified by proteases. The state of α-helix structure for modified WPC played the most important role in the formation of fibrils. Under the mild conditions used in this work, the α-helix structure of WPC modified by trypsin caused little destruction and resulted in fibrils with good morphology; the content of α-helices for WPC modified by other proteases decreased to 36.19 to 50.94%; thus, fibril formation was inhibited. In addition, it was beneficial for the modified WPC to form fibrils such that the surface hydrophobicity increased and the content of free sulfhydryl groups slightly decreased during heating.  相似文献   
58.
59.
Kiro Mojsov 《纺织学会志》2017,108(7):1136-1143
The enzymatic treatment of textiles significantly improves some of their physicochemical properties as well as increases their aesthetic values and comfort of use. Enzymes are used in order to develop environmentally friendly processes by reducing the concentration of chemical agents, water and energy consumption. In the present study, an attempt was made to treat the wool fabric with different concentrations (1, 3, and 5 g/L) of protease enzyme and observed the effects on physical and chemical properties including softness, absorbency, pilling resistance, weight loss, tensile strength loss, water retention, felting shrinkage, alkali solubility and urea-bisulphite solubility of wool fabric. The results of pretreated and enzyme-treated samples are compared to those obtained for untreated wool fabric. Enzyme-treated wool fabrics showed improvement in softness, absorbency, pilling resistance and felting shrinkage and a slight increase in weight loss, tensile strength loss, alkali solubility and urea-bisulphite solubility, and decrease in water retention of the fabric.  相似文献   
60.
BACKGROUND: This study analyzes the effect of decortication and protease treatment on the kinetics of liquefaction, saccharification and ethanol production from sorghum kernels. In general, bioethanol yields from sorghum are lower than those from maize. This has been attributed to reduced access of starch‐degrading enzymes due to the crosslinked protein net in the sorghum kernels. RESULTS: Liquefaction is described as a zero order kinetics process, with reaction rates enhanced by protease treatment. The use of protease almost doubled the liquefaction rate in both whole and decorticated sorghum, compared with untreated kernels. During saccharification of decorticated sorghum, protease treatment significantly affected the glucose/starch yield and the glucose concentration profile over time. When compared with maize, protease treatment of decorticated sorghum resulted in superior ethanol production rates. Specific ethanol yields during fermentation were statistically comparable with those for maize. CONCLUSION: Protease treatment of decorticated sorghum kernels can impart substantial economic benefits in terms of improvement of bioethanol yield (13% over whole sorghum) and in reduced fermentation time (approximately 50% with respect to maize). Copyright © 2010 Society of Chemical Industry  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号