首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   595篇
  免费   126篇
  国内免费   3篇
电工技术   1篇
综合类   5篇
化学工业   181篇
金属工艺   1篇
机械仪表   5篇
建筑科学   1篇
矿业工程   1篇
轻工业   47篇
武器工业   1篇
无线电   157篇
一般工业技术   286篇
冶金工业   5篇
原子能技术   1篇
自动化技术   32篇
  2024年   2篇
  2023年   38篇
  2022年   24篇
  2021年   27篇
  2020年   44篇
  2019年   46篇
  2018年   33篇
  2017年   27篇
  2016年   39篇
  2015年   29篇
  2014年   38篇
  2013年   40篇
  2012年   49篇
  2011年   48篇
  2010年   38篇
  2009年   49篇
  2008年   47篇
  2007年   25篇
  2006年   21篇
  2005年   12篇
  2004年   17篇
  2003年   9篇
  2002年   3篇
  2001年   4篇
  2000年   2篇
  1999年   1篇
  1998年   3篇
  1997年   2篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1986年   1篇
排序方式: 共有724条查询结果,搜索用时 15 毫秒
71.
Conductive fibers, which are highly adaptable to the morphologies of the human body, are attractive for the development of wearable systems, smart clothing, and textronics to detect various biological signals and human motions. A fiber‐based conductive sensor interconnected with hierarchical microhairy architectures, exhibiting remarkable stretchability (<200%) and sensitivity for various stimuli (pressure, stretching, and bending), is developed. For distinguishability of multiple gestures, two hierarchical hairy conductive fibers are twisted to fabricate a fiber‐type sensor, which monitors distinct waveforms of electrical signals retrieved from pressure, stretching, and bending. This sensor is highly robust under repeated appliances of external stimuli over multiple cyclic tests of various modes (<2200 cycles for each stimulus). Upon formation of a self‐assembled monolayer, it exhibits stable performance even under wet conditions. For practical applications, this sensor can be weaved into a smart glove to demonstrate a pressure and gesture‐discernible wearable controller for virtual reality (VR) interface, shedding light on advances in wearable electronics with medical and healthcare functionalities and VR systems.  相似文献   
72.
With recent progress in the design of materials and mechanics, opportunities have arisen to improve optoelectronic devices, circuits, and systems in curved, flexible, stretchable, and biocompatible formats, thereby enabling integration of customized optoelectronic devices and biological systems. Here, the core material technologies of biointegrated optoelectronic platforms are discussed. An overview of the design and fabrication methods to form semiconductor materials and devices in flexible and stretchable formats is presented, strategies incorporating various heterogeneous substrates, interfaces, and encapsulants are discussed, and their applications in biomimetic, wearable, and implantable systems are highlighted.  相似文献   
73.
2D molybdenum disulfide (MoS2) gives a new inspiration for the field of nanoelectronics, photovoltaics, and sensorics. However, the most common processing technology, e.g., liquid‐phase based scalable exfoliation used for device fabrication, leads to the number of shortcomings that impede their large area production and integration. Major challenges are associated with the small size and low concentration of MoS2 flakes, as well as insufficient control over their physical properties, e.g., internal heterogeneity of the metallic and semiconducting phases. Here it is demonstrated that large semiconducting MoS2 sheets (with dimensions up to 50 µm) can be obtained by a facile cathodic exfoliation approach in nonaqueous electrolyte. The synthetic process avoids surface oxidation thus preserving the MoS2 sheets with intact crystalline structure. It is further demonstrated at the proof‐of‐concept level, a solution‐processed large area (60 × 60 µm) flexible Ebola biosensor, based on a MoS2 thin film (6 µm thickness) fabricated via restacking of the multiple flakes on the polyimide substrate. The experimental results reveal a low detection limit (in femtomolar–picomolar range) of the fabricated sensor devices. The presented exfoliation method opens up new opportunities for fabrication of large arrays of multifunctional biomedical devices based on novel 2D materials.  相似文献   
74.
Fabrication of high‐performance surface‐enhanced Raman scattering (SERS) biosensors relies on the coordination of SERS substrates and sensing strategies. Herein, a SERS active AuCu alloy with a starfish‐like structure is prepared using a surfactant‐free method. By covering the anisotropic AuCu alloy with graphene oxide (GO), enhanced SERS activity is obtained owing to graphene‐enhanced Raman scattering and assembly of Raman reporters. Besides, stability of SERS is promoted based on the protection of GO to the AuCu alloy. Meanwhile, it is found that SERS activity of AuCu/GO can be regulated by DNA. The regulation is sequence and length dual‐dependent, and short polyT reveals the strongest ability of enhancing the SERS activity. Relying on this phenomenon, a SERS biosensor is designed to quantify apurinic/apyrimidinic endonuclease 1 (APE1). Because of the APE1‐induced cycling amplification, the biosensor is able to detect APE1 sensitively and selectively. In addition, APE1 in human serum is analyzed by the SERS biosensor and enzyme‐linked immunosorbent assay (ELISA). The data from the SERS method are superior to that from ELISA, indicating great potential of this biosensor in clinical applications.  相似文献   
75.
Nucleic acids are considered as perfect programmable materials for cascade signal amplification and not merely as genetic information carriers. Among them, catalytic hairpin assembly (CHA), an enzyme‐free, high‐efficiency, and isothermal amplification method, is a typical example. A typical CHA reaction is initiated by single‐stranded analytes, and substrate hairpins are successively opened, resulting in thermodynamically stable duplexes. CHA circuits, which were first proposed in 2008, present dozens of systems today. Through in‐depth research on mechanisms, the CHA circuits have been continuously enriched with diverse reaction systems and improved analytical performance. After a short time, the CHA reaction can realize exponential amplification under isothermal conditions. Under certain conditions, the CHA reaction can even achieve 600 000‐fold signal amplification. Owing to its promising versatility, CHA is able to be applied for analysis of various markers in vitro and in living cells. Also, CHA is integrated with nanomaterials and other molecular biotechnologies to produce diverse readouts. Herein, the varied CHA mechanisms, hairpin designs, and reaction conditions are introduced in detail. Additionally, biosensors based on CHA are presented. Finally, challenges and the outlook of CHA development are considered.  相似文献   
76.
Flexible thin‐film sensors have been developed for practical uses in invasive or noninvasive cost‐effective healthcare devices, which requires high sensitivity, stretchability, biocompatibility, skin/organ‐conformity, and often transparency. Graphene nanoplatelets can be spontaneously assembled into transparent and conductive ultrathin coatings on micropatterned surfaces or planar substrates via a convective Marangoni force in a highly controlled manner. Based on this versatile graphene assembled film preparation, a thin, stretchable and skin‐conformal sensor array (144 pixels) is fabricated having microtopography‐guided, graphene‐based, conductive patterns embedded without any complicated processes. The electrically controlled sensor array for mapping spatial distributions (144 pixels) shows high sensitivity (maximum gauge factor ≈1697), skin‐like stretchability (<48%), high cyclic stability or durability (over 105 cycles), and the signal amplification (≈5.25 times) via structure‐assisted intimate‐contacts between the device and rough skin. Furthermore, given the thin‐film programmable architecture and mechanical deformability of the sensor, a human skin‐conformal sensor is demonstrated with a wireless transmitter for expeditious diagnosis of cardiovascular and cardiac illnesses, which is capable of monitoring various amplified pulse‐waveforms and evolved into a mechanical/thermal‐sensitive electric rubber‐balloon and an electronic blood‐vessel. The microtopography‐guided and self‐assembled conductive patterns offer highly promising methodology and tool for next‐generation biomedical devices and various flexible/stretchable (wearable) devices.  相似文献   
77.
78.
The wearable industry is on the rise, with a myriad of technical applications ranging from real-time health monitoring, the Internet of Things, and robotics, to name but a few. However, there is a saying “wearable is not wearable” because the current market-available wearable sensors are largely bulky and rigid, leading to uncomfortable wearing experience, motion artefacts, and poor data accuracy. This has aroused a world-wide intensive research quest for novel materials, with the aim of fabricating next-generation ultra-lightweight and soft wearable devices. Such disruptive second-skin-like biosensing technologies may enable a paradigm shift from current wearable 1.0 to future wearable 2.0 products. Here, the state-of-the-art progress made in the key phases for future wearable technology, namely, wear → sense → communicate → analyze → interpret → decide, is summarized. Without a doubt, materials innovation is the key, which is the main focus of the discussion. In addition, emphasis is also given to wearable energy, multicomponent integration, and wireless communication.  相似文献   
79.
Epidermal bioelectronics that can monitor human health status non-invasively and in real time are core to wearable healthcare equipment. Achieving mechanically tolerant surface bioreactions that convert biochemical information to detectable signals is crucial for obtaining high sensing fidelity. In this work, by combining simulations and experiments, a typical epidermal biosensor system is investigated based on a redox enzyme cascade reaction (RECR) comprising glucose oxidase/lactate oxidase enzymes and Prussian blue nanoparticles. Simulations reveal that strain-induced change in surface reactant flux is the key to the performance drop in traditional flat bioelectrodes. In contrast, wavy bioelectrodes capable of curvature adaptation maintain the reactant flux under strain, which preserves sensing fidelity. This rationale is experimentally proven by bioelectrodes with flat/wavy geometry under both static strain and dynamic stretching. When exposed to 50% strain, the signal fluctuations for wavy bioelectrodes are only 7.0% (4.9%) in detecting glucose (lactate), which are significantly lower than the 40.3% (51.8%) in flat bioelectrodes. Based on this wavy bioelectrode, a stable human epidermal metabolite biosensor insensitive to human gestures is further demonstrated. This mechanically tolerant biosensor based on adaptive curvature engineering provides a reliable bio/chemical-information monitoring platform for soft healthcare bioelectronics.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号